8 (913) 791-58-46
Заказать звонок

Лошадиная сила к дому киловатт чему равна


Что измеряется в мвт. Что за величины Ватты, вольты и амперы в электросети дома

Международной системой измерения единиц (СИ) для измерения мощности предусмотрена единица, которая называется Ватт. Своим названием эта единица обязана шотландско-ирландскому механику-изобретателю Джеймсу Уатту, создавшему универсальную паровую машину.

В качестве единицы измерения мощности Ватт начал использоваться с 1882 года. До этого для большинства расчетов применялись лошадиные силы, которые были введены Джеймсом Уаттом.

С точки зрения физики мощность представляет собой скорость расхода энергии.

Для измерения мощности очень часто используется единица киловатт (кВт). Точно также, как и для других физических величин, приставка «кило», кратная тысяче, предусматривает умножение значения физической величина на одну тысячу.

Таким образом, в одном киловатте тысяча ватт (1 кВт = 1000 Вт) – для переведения киловатт в ватты нужно значение мощности умножить на тысячу – перенести знак запятой вправо на три цифры в значении мощности в киловаттах.

Небольшой пример, сколько ватт в киловатте:

  1. 1.25 кВт = 1250 Вт;
  2. 0.1 кВт = 100 Вт;
  3. 2.097 кВт = 2097 Вт;
  4. 0.0001кВт = 0.1 Вт;
  5. 10.5 кВт = 10500 Вт.

Иногда мощность, выраженную в ваттах, необходимо перевести в киловатты. Это делается также очень просто. Нам известно, что ватт – это одна тысячная киловатта, поэтому для перевода в ватты значение мощности в киловаттах следует разделить на тысячу.

Другими словами, знак запятой в значении мощности нужно перенести влево на три цифры.

Например:

  • 1599 Вт = 1.599 кВт;
  • 4 Вт = 0,004 кВт;
  • 10 Вт = 0,01 кВт;
  • 67000 Вт = 67 кВт;
  • 0.1 Вт = 0,0001 кВт.

Существует такое понятие, как киловатт-час. Эта системная единица применяется для измерения совсем другой физической величины. В киловаттах измеряется мощность – мера количества энергии, потребляемого электроприбором в единицу времени. Другими словами мощность – это энергия, разделенная на время.

В киловатт-часах (ватт-часах) измеряется количество работы, выполняемой прибором за один час. Для того, чтобы понять, как зависят между собой эти две величины, можно рассмотреть на работе любого электроприбора. Возьмем обычный телевизор, потребляемая мощность которого составляет 250 Вт.

Допустим, вы посмотрели телепередачу длительностью ровно один час. В течение этого времени телевизор израсходовал 250 Вт * 1 час = 250 Вт*ч или 0.25 кВт*ч электрической энергии. Если же телевизор проработает четыре часа, то в течение этого времени он потребит 1000 Вт*ч (1 кВт*ч) (250 Ватт х 4 часа).

Нетрудно догадаться, что обычная стоваттная лампочка потребит 1 кВт*ч электрической энергии в течение 10 часов.

Как перевести киловатты в лошадиные силы?

В 1784 году английским изобретателем – механиком Джеймсом Уаттом был построен универсальный паровой двигатель. Чтобы оценить его мощность, автор изобретения воспользовался термином «лошадиная сила».

Согласно одной из легенд, Ватт наблюдал, как лошади работают на угольной копи, вытаскивая корзины с углем через систему блоков. С точки зрения физики, лошади развивали определенную мощность.

Ватт определил, что одна лошадь в течение одной минуты в среднем поднимала 150 килограммов угля с 30-метровой глубины. Изобретатель принял мощность, необходимой для выполнения такой работы, равной одной «лошадиной силе» (hp – horse power).

Позже возникло целое семейство самых различных лошадиных сил. Но с 1960 года на смену «лошадиной силе» пришла другая единица мощности, на сегодняшний день практически ее заменившая.

Киловатт - кратная единица, образованная от «Ватт»

Ватт

Ватт (Вт, W) - системная единица измерения мощности.
Ватт - универсальная производная единица в системе СИ, имеющая специальное наименование и обозначение. Как единица измерения мощности, «Ватт» был признан в 1889г. Тогда же эта единица и была названа в честь Джеймса Уатта (Ватта).

Джеймс Ватт - человек, который придумал и сделал универсальную паровую машину

Как производная единица системы СИ, «Ватт» был включён в неё в 1960г.
С тех пор, в Ваттах измеряется мощность всего подряд.

В системе СИ, в Ваттах, допускается измерять любую мощность - механическую, тепловую, электрическую и т.д. Также допускается образование кратных и дольных единиц от исходной единицы (Ватт). Для этого рекомендовано использовать набор стандартных префиксов системы СИ, вида - кило, мега, гига и т.д.

Единицы измерения мощности, кратные ватт:

  • 1 ватт
  • 1000 ватт = 1 киловатт
  • 1000 000 ватт = 1000 киловатт = 1 мегаватт
  • 1000 000 000 ватт = 1000 мегаватт = 1000 000 киловатт = 1гигаватт
  • и т.д.
Киловатт-час

В системе СИ нет такой единицы измерения.
Киловатт-час (кВт⋅ч, kW⋅h) - это внесистемная единица, которая выведена исключительно для учёта использованной или произведённой электроэнергии. В киловатт-часах учитывается количество потреблённой или произведённой электроэнергии.

Использование «киловатт-час», как единицы измерения, на территории России регламентирует ГОСТ 8.417-2002, в котором однозначно указано наименование, обозначение и область применения для «киловатт-час».

Скачать ГОСТ 8.417-2002 (cкачиваний: 2991)

Выдержка из ГОСТ 8.417-2002 «Государственная система обеспечения единства измерений. Единицы величин», п.6 Единицы, не входящие в СИ (фрагмент таблицы 5).

Внесистемные единицы, допустимые к применению наравне с единицами СИ

Для чего нужен киловатт-час

ГОСТ 8.417-2002 рекомендует использовать «киловатт-час», как основную единицу измерения для учёта количества использованной электроэнергии. Потому что «киловатт-час» - это наиболее удобная и практичная форма, позволяющая получать наиболее приемлемые результаты.

При этом, ГОСТ 8.417-2002 абсолютно не возражает против использования кратных единиц, образованных от «киловатт-час» в тех случаях, когда это уместно и необходимо. Например, при лабораторных работах или при учёте выработанной электроэнергии на электростанциях.

Образованные кратные единицы от «киловатт-час» выглядят, соответственно:

  • 1 киловатт-час = 1000 ватт-час,
  • 1 мегаватт-час = 1000 киловатт-час,
  • и т.д.
Как правильно писать киловатт-час⋅

Правописание термина «киловатт-час» по ГОСТ 8.417-2002:

  • полное наименование нужно писать через дефис:
    ватт-час, киловатт-час
  • краткое обозначение нужно писать через точку:
    Вт⋅ч, кВт⋅ч, kW⋅h

Прим. Некоторые браузеры неверно интерпретируют HTML-код страницы и вместо точки (⋅) отображают знак вопроса (?) или иной кракозябр.

Аналоги ГОСТ 8.417-2002

Большинство национальных технических стандартов нынешних постсоветских стран увязаны со стандартами бывшего Союза, поэтому в метрологии любой страны постсоветского пространства можно найти аналог российского ГОСТ 8.417-2002, либо ссылку на него, либо его переработанный вариант.

Обозначение мощности электроприборов

Общепринятая практика - обозначать мощность электроприборов на их корпусе.
Возможно следующее обозначение мощности электрооборудования:

  • в ваттах и киловаттах (Вт, кВт, W, kW)
    (обозначение механической или тепловой мощности электроприбора)
  • в ватт-часах и киловатт-часах (Вт⋅ч, кВт⋅ч, W⋅h, kW⋅h)
    (обозначение потребляемой электрической мощности электроприбора)
  • в вольт-амперах и киловольт-амперах (VA, кVA)
    (обозначение полной электрической мощности электроприбора)
Единицы измерения для обозначения мощности электроприборов
ватт и киловатт (Вт, кВт, W, kW) — единицы измерения мощности в системе СИ Используются для обозначения общей физической мощности чего угодно, в том числе и электроприборов. Если на корпусе электроагрегата стоит обозначение в ваттах или киловаттах - это значит, что этот электроагрегат, во время своей работы, развивает указанную мощность. Как правило, в «ваттах» и «киловаттах» указывается мощность электроагрегата, который является источником или потребителем механического, теплового или иного вида энергии. В «ваттах» и «киловаттах» целесообразно обозначать механическую мощность электрогенераторов и электродвигателей, тепловую мощность электронагревательных приборов и агрегатов и т.д. Обозначение в «ваттах» и «киловаттах» производимой или потребляемой физической мощности электроагрегата происходит при условии, что применение понятия электрической мощности будет дезориентировать конечного потребителя. Например, для владельца электронагревателя важно количество полученного тепла, а уже потом - электрические расчёты.

ватт-час и киловатт-час (Вт ⋅ч, кВт ⋅ч, W ⋅h, kW ⋅h) — внесистемные единицы измерения потребляемой электрической энергии (потребляемой мощности). Потребляемая мощность - это количество электроэнергии, расходуемое электрооборудованием за единицу времени своей работы. Чаще всего, «ватт-часы» и «киловатт-часы» применяются для обозначения потребляемой мощности бытовой электротехники, по которой её собственно и выбирают.

вольт-ампер и киловольт-ампер (ВА, кВА, VA, кVA) — Единицы измерения электрической мощности в системе СИ, эквивалентные ватт (Вт) и киловатт (кВт). Используются в качестве единиц измерения величины полной мощности переменного тока. Вольт-амперы и киловольт-амперы применяются при электротехнических расчётах в тех случаях, когда важно знать и оперировать именно электрическими понятиями. В этих единицах измерения можно обозначать электрическую мощность любого электроприбора переменного тока. Такое обозначение будет наиболее соответствовать требованиям электротехники, с точки зрения которой - все электроприборы переменного тока имеют активную и реактивную составляющие, поэтому общая электрическая мощность такого прибора должна определяться суммой её частей. Как правило, в «вольт-амперах» и кратным им единицам измеряют и обозначают мощность трансформаторов, дросселей и других, чисто электрических преобразователей.

Выбор единиц измерения в каждом случае происходит индивидуально, на усмотрение производителя. Поэтому, можно встретить бытовые микроволновки от разных производителей, мощность которых указана в киловаттах (кВт, kW), в киловатт-часах (кВт⋅ч, kW⋅h) или в вольт-амперах (ВА, VA). И первое, и второе, и третье - не будет ошибкой. В первом случае производитель указал тепловую мощность (как нагревательного агрегата), во втором - потребляемую электрическую мощность (как электропотребителя), в третьем - полную электрическую мощность (как электроприбора).

Поскольку бытовое электрооборудование достаточно маломощное, чтобы учитывать законы научной электротехники, то на бытовом уровне, все три цифры - практически совпадают

Учитывая вышеизложенное можно ответить на главный вопрос статьи

Киловатт и киловатт-час | Какая разница?

  • Самая большая разница заключается в том, что киловатт - это единица измерения мощности, а киловатт-час - это единица измерения электроэнергии. Путаница и неразбериха возникает на бытовом уровне, где понятия киловатт и киловатт-час отождествляются с измерением производимой и потребляемой мощности бытового электроприбора.
  • На уровне бытового прибора-электропреобразователя - разница только в разделении понятий выдаваемой и потребляемой энергии. В киловаттах измеряется выдаваемая тепловая или механическая мощность электроагрегата. В киловатт-часах измеряется потребляемая электрическая мощность электроагрегата. Для бытового электроприбора цифры вырабатываемой (механической или тепловой) и потребляемой (электрической) энергии практически совпадают. Поэтому, в быту нет никакой разницы, в каких понятиях выражать и в каких единицах измерять мощность электроприборов.
  • Связывание единиц измерения киловатт и киловатт-час применимо только для случаев прямого и обратного преобразования электрической энергии в механическую, тепловую и т.д.
  • Совершенно недопустимо применять единицу измерения «киловатт-час» в случае отсутствия процесса преобразования электроэнергии. Например, в «киловатт-час» нельзя измерять потребляемую мощность дровяного отопительного котла, но можно измерять потребляемую мощность электрического отопительного котла. Или, например, в «киловатт-час» нельзя измерять потребляемую мощность бензинового двигателя, но можно измерять потребляемую мощность электромотора
  • В случае прямого или обратного преобразования электрической энергии в механическую или тепловую, увязать киловатт-час с другими единицами измерения энергии можно при помощи онлайн-калькулятора сайта tehnopost.kiev.ua:

Одними из основных характеристик любого электрооборудования является напряжение и потребляемая мощность, в связи, с чем на любом приборе (или в паспорте к нему) имеется информация о мощности (Ватт) и напряжении (Вольт).

Вольт (В или V) - это единица измерения электрического потенциала, напряжения, разности потенциалов и электродвижущей силы.

Сравнение

Вольт и Ватт - это единицы измерения для разных электротехнических параметров.

1 Вольт - это величина электрического напряжения на концах проводника, необходимая для выделения теплоты мощностью равной 1 Ватт при силе постоянного электрического тока, протекающего через данный проводник, равной одному Амперу. Также 1 Вольт можно охарактеризовать как разность электрических потенциалов между двумя имеющимися точками в случае, когда для перемещения электрического заряда величиной в 1 Кулон из точки в точку требуется произвести работу, равную 1 Джоулю.

1 Ватт - величина мощности, при которой за одну секунду совершается работа равная одному Джоулю. Следовательно, Ватт - это производная от других величин единица. Так, например, мощность соотносится с напряжением следующим образом: Вт = В А, где В – показатель величины напряжения, а А – показатель величины силы тока. Кроме механической мощности различают ещё электрическую и тепловую мощность.

Выводы сайт

  1. Ватт (Вт или W) - стандартная единица измерения мощности.
  2. Вольт (В или V) - стандартная единица измерения напряжения, разности электрических потенциалов, электрического потенциала и электродвижущей силы.
  3. Мощность (Вт) любого прибора можно рассчитать, перемножив напряжение (В) на силу тока (А). АМПЕР (А) - стандартная единица измерения силы электрического тока.

Практически каждый человек слышал про параметры электричества как Вольт, Ампер и Ватты . Но на вопросы: что они означают и как измерить большинство из нас не сможет правильно ответить. Прочитайте эту статью до конца и Вы узнаете все по этой теме.

Определение величин.

Напряжение — это физическая величина, характеризующая величину отношения работы электрического поля в процессе переноса заряда из одной точки A в другую точку B к величине этого самого заряда. Проще говоря это разность потенциалов между двумя точками. Измеряется в Вольтах. Напряжение схоже по сути с величиной давления воды в трубе, чем оно выше тем быстрее вода течет из крана.

Величина стандартизированная и одинаковая для всех квартир , домов и гаражей равная 220 Вольт при однофазном электроснабжении. А для трехфазного подключения (изредка подключаются гаражи или отдельные большие частные дома)- она равна 380 Вольтам между тремя разноименными фазами, но между каждой отдельной она опять будет равна 220 Вольтам.

Учитывайте, что допускается по ГОСТ 10 процентное отклонение для домашней электросети. Величина напряжения должна быть не менее 198 и не более 242 Вольт.

Сила тока — это физическая величина, равная отношению количества заряда за определенный промежуток времени протекающего через проводник к величине этого самого промежутка времени. Измеряется в Амперах.

Проще говоря, это количественный показатель потребляемой электроэнергии вашим каждым электроприбором в отдельности или всей квартиры в целом!
Силу тока приблизительно можно сравнить с потоком воды из крана, чем больше Мы его открываем, тем больше воды выливается за единицу времени или наоборот.

Напряжение (U), ток (I) и сопротивление (R) участка цепи тесно взаимосвязаны и пропорциональны между собой по закону ОМА: I = U/R. Он звучит следующим образом- Сила тока в участке цепи обратно пропорциональна сопротивлению участка цепи и прямо пропорциональна его напряжению на концах. Напряжение всегда равно 220 В в квартире и доме или 380 В в трехфазной сети. Переменными (изменяющимися) будут две величины Сила тока и сопротивление, которые тесно напрямую взаимосвязаны, во сколько раз уменьшается сопротивление участка цепи- во столько раз увеличивается ток в этом же участке цепи. Сопротивление участка цепи измеряется в Омах и практически не применяется для описания характеристик электросети дома. Вместо него используется потребляемая мощность , которая зависит от подключенной нагрузки или мощности потребителей электрической энергии.

Мощность вычисляется путем умножения величины напряжения на потребляемый ток электроприбором. Иными словами, ее можно сравнить с количеством воды в литрах, которое выльется из крана. Измеряется в Ваттах. А Ватт (Киловатт= 1000 Ватт)/часах ведется учет электроэнергии. Так если в течении часа будет работать телевизор мощностью 50 Ватт, то его потребление составит 50 Ватт/час, а за 2 часа соответственно- 100 Ватт/час или 0.1 кВт\ч.

Porsche Taycan Turbo S - Porsche Россия

Улучшенный 2-зонный климат-контроль с раздельными настройками температуры и скорости потока воздуха для водителя и переднего пассажира, автоматический режим рециркуляции, включая датчик качества воздуха
Контроль направления воздушным потоком осуществляется с помощью Porsche Communication Management (PCM)
Удаленное управление микроклиматом, включая предохлаждение аккумулятора
Стекла с термоизоляцией
Встроенный фильтр с активированным углем
Электрический тепловой насос
18-позиционные адаптивные спортивные сиденья с электрорегулировкой, функцией памяти, включая регулировку рулевой колонки по высоте и вылету
Интегрированные подголовники спереди, логотип "turbo S" на подголовниках передних и задних сидений
Два задних сидения с откидывающимся центральным подлокотником и асимметричным складыванием спинок в пропорции 60:40
Подогрев передних и задних сидений
16,8-дюймовый изогнутый дисплей
Центральная консоль с непосредственным сенсорным управлением
Двухцветный cалон с отделкой материалом Race-Tex
Эмблема ‘Taycan’ на центральной консоли
Пакет отделки декоративных элементов салона темного цвета (Darksilver)
Пакет отделки декоративных элементов салона карбоном
Обивка потолка Race-Tex
Многофункциональное спортивное рулевое колесо GT c отделкой Race-Tex
Напольные коврики
Солнцезащитные козырьки для водителя и переднего пассажира
Подлокотник на центральной консоли спереди со встроенным отсеком для хранения
Накладки на педали, выполненные из нержавеющей стали
Рулевое колесо с подогревом
Багажное отделение спереди и сзади
Электропривод багажной двери
Кнопка багажной двери
Отсеки для хранения: перчаточный ящик, отсек для хранения в центральной консоли спереди, отсек для хранения между задними сиденьями, отсеки для хранения в дверях спереди и сзади, отсеки для хранения по краям багажного отделения, а также ниша под полом багажного отсека
12-вольтовая розетка в отсеке для хранения на центральной консоли
12-вольтовая розетка в отсеке для хранения сзади
Два встроенных подстаканника спереди и сзади
Крючки для одежды на стойках B с водительской и пассажирской стороны
Система "Активного крепления капота"
Элементы защиты от бокового удара в каждой двери
Система бамперов, включающая в себя высокопрочные балки, два деформируемых элемента, каждый из которых с двумя отверстиями с резьбой для установки буксировочных проушин (входят в аварийный комплект)
Полноразмерные подушки безопасности для водителя и переднего пассажира
Коленные подушки безопасности для водителя и переднего пассажира
Боковые подушки безопасности спереди
Подушки безопасности занавесочного типа, закрывающие потолок и всю боковую часть от стойки А до стойки С
Пассивная система защиты при опрокидывании, включающая подушки безопасности занавесочного типа и преднатяжители ремней безопасности
Трехточечные инерционные ремни безопасности. С преднатяжителями для водителя и крайних пассажиров, с ограничителями усилия для ремней безопасности передних сидений
Ручная регулировка ремней безопасности по высоте для водителя и переднего пассажира
Система напоминания о пристегивании ремнями безопасности для передних и задних сидений
Электронный иммобилайзер с ключом-транспондером. Сигнализация, система контроля пространства салона с ультразвуковыми датчиками
Крепления стандарта ISOFIX для установки детского сидения на боковых задних сиденьях
Система экстренного вызова (ЭРА-ГЛОНАСС)

1300 ватт сколько лошадиных сил. Перевод киловатт в лошадиные силы.

Лошадиная сила – это внесистемная единица измерения мощности, которая официально выведена из употребления в России, однако по-прежнему находит применение, к примеру, в автомобильной сфере.

Пожалуй, многие из нас,представляя лошадиную силу, используют примерно следующую аналогию: если к автомобилю мощностью в 100 л.с. привязать канат, на другом конце которого будет табун из 100 лошадей, то начав движение в противоположных направлениях, они не смогут сдвинуться с места. И это не совсем верно. На практике лошади, скорее всего, выиграют и просто выведут из строя трансмиссию автомобиля еще на старте. Дело в том, что мощность двигателя в лошадиных силах – это номинальная величина. Для превращения потенциальной энергии двигателя в кинетическую необходимо развить определенную частоту вращения коленчатого вала и передать нужный крутящий момент на колеса. Кроме того, лошадиная сила является величиной относительно строго установленной, а возможности лошадей могут сильно разниться и отличаться от этого параметра.

Единица мощности лошадиные силы и соотношение с Ваттами

Первым термин «лошадиные силы» стал использовать знаменитый английский (шотландский) механик-изобретатель Джеймс Уатт. Эта мысль пришла ему в голову, когда он наблюдал за работой на угольных копях, где лошадей использовали для подъема породы на поверхность земли. Посмотрев на процесс с точки зрения физики, ученый определил, что лошадь обладает некоторой мощностью, которую можно вычислить по соотношению выполненной работы ко времени. За основу была взята масса угля, поднимаемого с глубины в 30 метров за одну минуту. Получилось 150 кг/1 м – эту величину он и определил равной 1 л.с.(HP – horse power) Позднее, в 1882 году, Британская организация инженеров ввела в использование ватт – единицу измерения, равную 0,736 л.с.

Кстати, последующий пересчет показателей, вычисленных Уаттом, показал, что в действительности ни одна лошадь не способна развить достаточную мощность для вертикального подъема 150 кг груза со скоростью 1 м/с. Более того – в копях, где Уатт проводил свои расчеты, для работы использовались пони. Считается, что он посчитал производительность одной лошади в минуту по соотношению фут-фунт и увеличил это значение на 50%. По одной из версий, изобретатель специально уравнял мощность своего двигателя с мощностью лошади, чтобы продемонстрировать большую продуктивность агрегата с целью продать его.

Как переводить ватты в лошадиные силы

В 1784 году Джеймс Уатт представил общественности первый паровой двигатель. Для измерения мощности изобретенного и сконструированного им агрегата, Уатт ввел термин «лошадиная сила», разработанный им ранее.

Дальнейшее развитие механики породило возникновение целого ряда аналогичных «лошадиных сил», обозначавших разную величину. Наличие нескольких одноименных единиц приводит к необходимости проведения перевода мощности между различных измерительных систем. В 1960 году в международной системе СИ официальной единицей измерения мощности был установлен ватт. Несмотря на это, лошадиная сила по-прежнему используется в некоторых сферах деятельности, в частности, в автомобильной промышленности.

Для осуществления перевода 1 л.с. в ватты требуется умножить показатель мощности на 736: 1 л.с. =736 Вт. Соответственно, обратный перевод производится путем деления значения на это же число. Примеры:

  • 5 л.с. = 3,68 кВт;
  • 10 кВт = 13,57 л.с.

Но не все так просто! Поэтому читаем текст ниже под видео, которое тоже может быть полезным для понимания основных физических величин электрика.

Такие разные эталоны

После определения Уаттом новой единицы измерения свои «лошадиные силы» появились не только в разных системах измерений, но и в отдельных странах. На сегодня эта единица не является официально признанной, но используется в 4 различных вариантах:

    • Метрическая лошадиная сила (используется в России). Равна мощности, необходимой для подъема 75-килограммового груза со скоростью 1 м/с. Для перевода в ватты умножается на 735,5. Пример: 2 л.с. = 1471 Вт.
    • Электрическая лошадиная сила. Используется в электромеханике и электрике. Чтобы перевести ватты в эту единицу, нужно разделить их на 746. Например, 4000 Вт (4 киловатт) = 5,362 эл. л.с.
    • Механическая л.с. Соответствует значениям английской системы мер. Одна мех. л. с. равна 745,7 Вт (1,014 от метрической л.с).
    • Котловая лошадиная сила. Применяется в промышленной и энергетической отрасли. Для перевода в киловатты используется следующее соотношение: 1 к. л.с. = 9,809 кВт.

Традиция использования лошадиных сил в автомобильной отрасли связана с удобством – эта величина является характерной и всегда понятна даже тем, кто далек от тонкостей автомеханики. Гораздо больше людей смогут сориентироваться, на что способна машина с заявленной мощностью в 150 л.с., а вот 110,33 киловатт введут большинство в заблуждение. Хотя на самом деле это одно и то же.

Автопроизводители всегда ищут преимущество над конкурентами. Чаще всего автомобильные компании обращают внимание на мощность автомобиля, пытаясь привлечь потенциального покупателя. Но мощность автомашины еще не говорит о том, что автомобиль в действительности является мощным. Так автомобиль, имеющий больше лошадиных сил может быть слабее автомобиля, имеющий меньше количество л.с., но у которого больший крутящий момент. В чем разница между этими измерениями? Что они означают? На удивление эти измерения совершенны разные по своему смыслу, но взаимосвязаны.

Некоторые транспортные средства, при небольшом объеме двигателя, имеют большую мощность. Так рекордсменом среди традиционных атмосферных двигателей является спортивный автомобиль Honda S2000, производство которого было прекращено несколько лет назад. Как лезвие самурайского меча, этот спортивный автомобиль был очень резким и очень быстрым.

Первые модели этой марки оснащались 2,0-х литровым бензиновым двигателем, мощностью 240 л.с.!!! Потрясает одно, что достигнуть такой мощности Японской компании удалось без использования турбонагнетателей (турбин). Мощность, которую выдавала S2000 была естественна, благодаря возможности работы двигателя почти на 9000 оборотах!!! Представляете, какой рев мотора был при максимальном ускорении машины?

Но если посмотреть подробнее технические характеристики этого автомобиля, то мы увидим, что крутящий момент составляет всего 208Нм (Ньютон-метр), что сопоставимо с маломощными автомобилями.

Не смотря на это, Honda S2000 была мощным автомобилем, но это достигалось только благодаря бешеным оборотам двигателя (который ревел, как звук сирены воздушной тревоги), которые постоянно находились около опасной красной черты тахометра.

Возьмем другой совершенно противоположный пример - автомобиль Dodge Ram 3500 Пикап. Покупатели могут выбрать супер-мощную комплектацию с дизельным двигателем компании Cummins, объемом 6,7 литра, который выдает мощность в 330 л.с. и крутящим моментом 895Нм. Это очень сильный автомобиль, который способен сдвинуть с места все что угодно (Примеч. авт. «или почти все»)

Происхождение лошадиных сил

Есть один поворотный момент в истории, когда один человек сыграл огромную роль и оказал содействие в развитии мира, в котором мы сейчас живем. Этот человек инженер-изобретатель Джеймс Уатт, положивший начало промышленной революции в Англии, а затем во всем мире в 1700-х годах. Самые знаменитые изобретения Джеймса это ножной стартер и улучшенный паровой двигатель, который инженер сделал более эффективным, мощным и производительным. Но это еще не все. Изобретатель, впервые в мире, создав паровой котел (паровой двигатель) придумал понятие мощности, которая выражается "Ваттах" (Ватт), в лошадиных силах и в крутящем моменте.

По сути, эти понятия и систему измерения мощности Джеймс Уайт придумал для того, чтобы при продаже своих паровых котлов (двигателей) более проще объяснить клиенту, какую мощность выдает его котел. Ведь согласитесь намного проще сказать покупателю котла: "паровой двигатель будет выполнять работу двух лошадей", чем сказать в 18-веке, что мощность парового двигателя составляет N-количество «Нм» или «Фунт-Футов» силы. Никто бы не понял.

Используйте силу

Сила эта главное, чтобы достичь какой-то скорости. Ведь без затрачивания сил не будет и скорости. Соответственно скорость будет зависеть от того, какой объем силы мы затратили для достижения скорости. Для примера: Если несколько метров пробежать за 5 секунд и 10 секунд, то соответственно сила, которую мы потратим для этой короткой пробежки, будет различна. Ведь для более быстрой пробежки необходима большая сила.

Другой пример: Если вы передвигаете мебель в доме, то если вы хотите быстрее ее передвинуть, вам необходима, куда большая сила, чем, если двигать мебель медленно и не спеша. И сила при такой работе куда важнее скорости.

Л.с. и Н.м.

Мощность и крутящий момент неразрывно взаимосвязаны. Так как лошадиная сила происходит из крутящего момента. Формула для расчета мощности двигателя очень проста.

Для начала необходимо силу, которая выражается в Ньютон-метрах (Н.м.) умножить на 0,7376 для того, чтобы перевести значения в Британскую и Американскую единицу измерения силы (Фунт-Фут), а далее воспользовавшись выше указанной формулой умножить на количество оборотов двигателя (RPM), а далее разделить полученное значение на число 5252 . В итоге мы получим примерное значение мощности двигателя, которое выражается в лошадиных силах. На примере, нижеуказанной формулы, сделан расчет мощности двигателя при силе 100 фунт-фут (1000 оборотов в минуту двигателя). На примере получилось, что при силе в 100 фунт-футах и оборотах 1000 в минуту, мощность двигателя составила приблизительно около 19 л.с.

Разницу между мощностью и силой легко понять на еще одном примере. Если вы на автомобиле буксируете, какой-то груз в гору, то вам будет необходим низкий крутящий момент, но больше силы для более легкого буксирования. Если же вы хотите максимально быстро разогнать автомобиль с 0 до 100 км/час, то вам необходимо максимальное количество оборотов двигателя и не очень много силы для разгона автомашины за короткий промежуток времени. Но чем больше будет мощность, тем быстрее вы разгоните автомашину до 100 километров.

Поэтому, как правило, различная грузовая и подъемная техника, оснащается дизельными двигателями, которые имеют большую тягу, но не высокое максимальное количество оборотов двигателя по сравнению с бензиновыми силовыми агрегатами. Дизельные двигатели способны передвигать транспортные средства, которые имеют огромную массу. Но такой автотранспорт очень медленно разгоняется с места из-за небольшого количества л.с.

Вот почему Honda S2000 может сорваться с места и разогнаться до 100 километров в час примерно за 6 секунд, Dodge RAM 3500 может буксировать груз весом более 8000 килограмм (на прицепе). Это абсолютное различие между крутящим моментом и лошадиной силой.

В транспортных средствах есть еще один элемент, который помогает автомобилю передавать крутящий момент на колеса - это коробка переключения скоростей, которая предназначена для передачи максимального крутящего момента при определенной скорости. Например, тракторные тягачи и трактора для перевозки тяжелых грузов в прицепах, оснащаются большими дизельными двигателями, у которых большой крутящий момент и большая сила, выраженная в Ньютон-метрах (Н.м.). Но такие двигатели не имеют большое количество лошадиных сил. Такие двигатели созданы не для разгона транспортного средства до высокой скорости, а созданы для перевозки тяжелых грузов. Некоторые такие тракторы оснащены 10 ступенчатыми коробками переключения передач.

Так мощность и крутящий момент близко связаны непосредственно друг с другом. Лошадиная сила зависит от крутящего момента (силы Н.м.) и от количества оборотов в минуту двигателя.

Крутящий момент - по своей сути это сила и мощность, с которой можно сделать определенную работу. И чем меньше затрачивается времени для выполнения (или набора определенной скорости), тем больше мощность автомобиля, которая выражается в лошадиных силах.

Автомобиль, который может с места проехать 1,5 километра за 4 секунды нуждается в большей мощности, чем автомашина проезжающая этот же отрезок за 12 секунд.

Все началось с далекого 1782-го года, когда Джеймс Уатт произвел паровую машину двойного действия, которая получилась, в отличие от первых паровых машин, наиболее экономичной и легко управляемой. Но эта машина оставалась бесполезной, так как не было ее коммерческого использования, поэтому он решил провести пиар своей паровой машины. Джеймс Уатт внес предложение по использовании своего изобретения для выкачивания воды из шахты. Но как разъяснить шахтовладельцам, в чем преимущества изобретения и что им предлагают приобрести?

Наблюдая за лошадью, изобретатель пришел к заключению, что она в среднем за минуту может поднять груз в 180 фунтов на 181 фут. При этом, округлив расчеты, он принял, что одна лошадиная сила будет составлять 33000 фунто-футов за минуту. Эти расчеты были отнесены к мощности лошади. Кратковременная лошадь имеет возможность развивать мощность приблизительно 1000 кг·м/с, и это соответствует 33 475 BTU/ч (котловая лошадиная сила) или 9,8 кВт. Такое сравнение он решил применить и к своей паровой машине.

Для того чтобы дать оценку мощности двигателя, было предпринято следующее. Лошадь запрягли в обычный водоподъемный насос, который работал на конной тяге, и наблюдали, сколько за день она сможет поднять воды. Потом к этому насосу присоединили паровой двигатель и уже наблюдали за его возможностями. Получив оба результата, ученый поделил второй количество на первое, объяснив этими цифрами шахтовладельцем, сколько лошадей заменяет один насос. В результате эксперимента полученная мощность получила название «лошадиная сила».

Однако «лошадиная сила», как единица мощности не является определенной и четкой. Например, автомобиль произведений в Японии, обладающий мотором 200 лошадиных сил, не тождественен французскому автомобилю с такой мощностью. Поэтому в разных странах, при ответе на вопрос, что такое лошадиная сила, получали схожие цифры, которые отличались между собой в сотых и тысячных долях.

В результате таких неразберих в 1960 году приняли систему измерения мощности, в которой единицей измерения стали Ватты и Киловатты. Казалось бы, проблема решена, но люди консервативны, и сравнивать свой автомобиль с замечательным скакуном им куда приятнее, чем просто с цифрой и обозначением. Вот почему термин «лошадиная сила» существует до сих пор.

Подборка наиболее важных документов по запросу Перевод кВт в лошадиные силы (нормативно-правовые акты, формы, статьи, консультации экспертов и многое другое).

Нормативные акты

19. В случае если в технической документации на транспортное средство мощность двигателя указана в метрических единицах мощности (кВт), то соответствующий пересчет во внесистемные единицы мощности (лошадиные силы) осуществляется путем умножения мощности двигателя, выраженной в кВт, на множитель, равный 1,35962 (переводной коэффициент - 1 кВт = 1,35962 л.с.) ("Физические величины: Справочник" А.П. Бабичев, Н.А. Бабушкина, А.М. Братковский и др.; под ред. И.С. Григорьева, Е.З. Мейлихова. - М.; Энергоатомиздат, 1991. - 1232 с. - ISBN 5-283-04013-5).

Статьи, комментарии, ответы на вопросы : Перевод кВт в лошадиные силы

Если в технической документации на транспортное средство мощность двигателя указана в метрических единицах мощности (кВт), то соответствующий пересчет во внесистемные единицы мощности (лошадиные силы) осуществляется путем умножения мощности двигателя, выраженной в кВт, на множитель, равный 1,35962 (переводной коэффициент - 1 кВт = 1,35962 л. с.).

Документ доступен:

Мощность двигателя возьмите из ПТС или свидетельства о регистрации. Мощность в кВт, переведите в лошадиные силы, умножив на 1,35962. Результат округлите до второго знака после запятой. Например, 150 кВт - это 203,94 л. с. (150 кВт x 1,35962) (п. 19 Методических рекомендаций по применению гл. 28 НК РФ).

Документ доступен: в коммерческой версии КонсультантПлюс

Бывает так, что мощность двигателя указывается в киловаттах (они же кВт, они же kW ). В отличие от лошадиных сил (они же л.с., они же hp в английском варианте, PS в немецком и ch во французском) это метрическая размерность. Их зависимость очень простая, перевести киловатты в лошадиные силы или наоборот лошадиные силы в киловатты, вы можете с помощью данного калькулятора. Для удобства для некоторых значений готовые результаты представлены ниже в таблице слева. Поскольку мало кого интересует точность знаков после запятой, данные округлены.

кВт л.с.
4 5
8 11
11 15
55 75
59 80
66 90
77 105
80 109
85 116
90 122
100 136
103 140
110 150
120 163
125 170
135 184
150 204
184 250

Так сколько ватт в лошадиной силе? Если коротко, то 1 л.с. = 736 Вт = 0,736 кВт. Если точно, то метрическая лошадиная сила составляет 735,49875 Вт, именно она взята за основу в России и европейских странах. В США, Великобритании используется значение 745,69988145 Вт. Приведём для сравнения таблицу с данными для линейки моторов одного азиатского производителя с его английской версии сайта и немецкой.Обратите внимание на "bhp". Первая буква здесь неспроста, ведь кроме "обычных" метрических лошадиных сил, ещё есть механические, электрические, котловые, налоговые, которые появились на свет в силу исторических причин. Также надо отметить, что заявленная мощность двигателя будет немного отличаться от реальной. Это напоминает историю с расходом топлива - есть испытания в дорожных условиях, а есть стендовые. Мощность по документам не учитывает трансмиссионных потерь.

Как перевести ватты в амперы и наоборот, формулы расчётов


В чем состоит отличие ампер и киловатт

Фундаментальное отличие между единицами измерения параметров электрической сети, которые вынесены в заголовок этого раздела, состоит в том, что они представляют собой численную меру различных физических величин.

В данном случае:

  • амперы (сокращение А) показывают силу тока;
  • ватты и киловатты (сокращение Вт и кВт, соответственно) характеризуют активную (фактически полезную) мощность.

На практике используется также расширенное описание мощности с измерением ее в вольт-амперах и, соответственно киловольт-амперы, которые кратко обозначаются как ВА и кВА.

Они, в отличие от Вт и кВт, которыми описывается активная мощность, указывают на полную мощность.

В цепях постоянного тока полная и активная мощности совпадают. Аналогично, в сети переменного тока при небольшой мощности нагрузки на инженерном уровне строгости можно не учитывать различие между Вт (кВт) и ВА (кВА), т.е. работать только с двумя первыми единицами.

Для таких цепей действует следующее простое соотношение:

W = U*I, (1)

где W – (активная) мощность, задаваемая в Вт, U –напряжение, указываемое в вольтах, I – сила тока, измеряемая в амперах.

При увеличении мощности нагрузки до уровня тысяча ватт и выше для постоянного тока соотношение (1) не меняется, а для переменного тока его целесообразно записать как:

W = U*I*cosφ, (2)

где cosφ – так называемый коэффициент мощности ли просто “косинус фи”, показывающий эффективность преобразования электрического тока в активную мощность.

По физическому смыслу φ представляет собой угол между векторами переменного тока и напряжения или угол фазового сдвига между напряжением и током.

Хорошим критерием необходимость учета данной особенности являются те случаи, когда в паспортных данных и/или на корпусных табличках-шильдиках электроприборов, преимущественно мощных, потреблением более 1 кВт, вместо кВт указывают ВА или кВА.

Обычно для бытовых электрических устройств с мощными электродвигателями (стиральные и посудомоечные машины, насосы и аналогичные им) можно положить cosφ = 0,85.

Это означает, что 85% потребляемой энергии является полезной, а 15% образует так называемую реактивную мощность, которая непрерывно переходит из сети в нагрузку и обратно до тех пор, пока в процессе этих переходов она не рассеется в виде тепла.

При этом сама сеть должна быть рассчитана именно на полную мощность, а не на полезную. Для указания этого факта ее указывают не в ваттах, а в вольт-амперах.

Как единица измерения ватт (воль-ампер) иногда оказывается слишком маленьким, что приводит к сложным для визуального восприятия числам с большим количеством знаков. С учетом этой особенности в ряде случаев мощность указывают в киловаттах и киловольт-амперах.

Для этих единиц справедливо:

1000 Вт = 1 кВт и 1000 ВА = 1кВА. (3).


Как перевести Амперы в Киловатты в трёхфазной сети

Ватт = √3 * U * I;

√3 = 1,732;

P = √3 * U * I;

Ампер = Вт /(√3 * В)

I = P / √3 * U

Задача. Рассчитать мощность трёхфазного водонагревателя. При его работе токоизмерительные клещи показывают нагрузку 3,8 А.

P = 1,732 * 380 * 3,8 = 2501

Ответ: мощность водонагревателя составляет 2,5 кВт.

Примечание. Цифры могут быть совсем другими, в зависимости от схемы управления нагревателем.

Подведём итоги. Используя выше приведённые формулы, подобрать материалы для ремонта или монтажа, не составит ни какого труда, даже людям, не имеющим электротехнического образования.

Для закрепления информации смотрите видеоролик по теме. Он создан немного старомодно, но зато полезный и познавательный.

Так же читайте: Расчёт мощности трёхфазной сети.

На этом буду заканчивать. Свои вопросы пишите в комментариях. Если статья была полезной, то жмите на кнопки социальных сетей. До новых встреч. Пока.

С уважением Семак Александр!

Почему возникает необходимость перехода от ампер к киловаттам и обратно

Свести описание электрической сети только к одной единице не получается. Необходимость использования двух разных единиц измерения параметров возникает из-за того, что в подавляющем большинстве случаев конкретная проводка обслуживает несколько потребителей, каждый из которых вносит свой вклад в силу протекающего тока.

В результате

  • сечение проводов удобно рассчитывать по максимальной силе протекающего через них тока;
  • аналогичным образом подбираются автоматические выключатели, которые защищают приемники и провода от перегрузки и короткого замыкания;
  • основной же характеристикой любого подключаемого к розетке электрического устройства как токоприемника или нагрузки традиционно является его мощность.

Популярность указания мощности потребления, как одного из главных параметров электроприбора, определяется также тем, что оплата электроэнергии осуществляется по электросчетчику, который отградуирован в кВт*час.

Соответственно при известной стоимости одного кВт*час оплата электроэнергии определяется простым перемножение трех чисел: мощности, продолжительности работы и стоимости одного кВт*час.

С учетом особенности определения расходов на электроэнергию становится понятным преимущество применения для мощных устройств не полезной мощности, измеряемой в кВт, а полной мощности, которая определяется в кВА.

Оно выгодно тем, что дает возможность выполнять расчеты по единой методике без отдельного учета фактического фазового сдвига тока и напряжения.

Принцип идентичности расчетов при знании полной мощности распространяется также на расчет тока.

Сам пересчет из одной единицы в другую выполняется по представленным выше соотношениям (1) и (2) и из-за их простоты не составляет больших проблем.

В данном случае свою роль играет то, что напряжение U можно считать константой, которая меняется только от количества фаз проводки.

Далее приведем основные правила выполнения таких расчетов применительно к наиболее часто встречающихся на практике случаям.

Ватт, киловатт и киловатт-час

Единица измерения ватт получила свое название в честь ученого Джеймса Ватта, который занимался изучением электричества в позапрошлом веке. Именно ему приписывают изобретение универсальной паровой машины.

В ваттах сегодня измеряется любая мощность, а не только электрическая. Например, для измерения мощности двигателя автомобиля наряду с лошадиными силами также применяется ватт. Однако чаще всего используется не сама единица «ватт», а производная от нее — киловатт (кВт). По аналогии с метром и километром, а также с граммом и килограммом один киловатт равен тысяче ватт.

Нередко также подсчет энергии ведется и в других единицах, кратных ватту. Например, для измерения большой мощности удобно применять мегаватт — единицу, которая соответствует миллиону ватт. Также можно использовать и другие префиксы международной системы единиц, в том числе и те, которые соответствуют десятым, сотым, тысячным долям.

Например:

  • дециватт — это десятая часть ватта;
  • сантиватт — его сотая часть;
  • милливатт — это тысячная часть ватта.

Мощность электротока, которая потребляется обычными бытовыми приборами, такими как светильники, холодильник, телевизор лучше всего измеряется в кВт. Если ватт и производные единицы внесены в систему СИ, то киловатт-час там отсутствует. КВт·ч — это единица для измерения, которая внесистемная. Она была создана только для того, чтобы вести учет производящейся или, наоборот, использующейся электрической энергии.

Применение кВт·ч на территории РФ регламентирует ГОСТ, где однозначно указано название, обозначение и сфера, в которой она используется. Обозначаться киловатт-час может либо четырьмя русскими буквами, либо тремя английскими. Русское обозначение — «кВт·ч», а английское — «kW·h».

Вам это будет интересно Основные и дополнительные средства защиты в электроустановках

Определение мощности по силе тока для однофазной сети

Необходимость выполнения этой процедуры чаще всего возникает при задании ограничений по максимальной мощности электроприбора, который можно подключить к конкретной розетке или их группе.

При нарушении данного ограничения возрастают риски пожара, а пластмассовые декоративные элементы розетки могут расплавиться из-за избытка выделяющегося тепла.

На основании определений, которые в математической форме описываются выражениями (1) и (2), для нахождения мощности следует просто умножить ток на напряжение.

Максимально допустимый ток выносится на маркировку розетки и для большинства комнатных бытовых изделий этой разновидности обычно составляет 6 А.

Напряжение, подаваемое от электросети на розетку, равно 220 – 230 В. Таким образом, максимальная мощность составляет 1,3 кВт.

Отдельно укажем на то, что риски повреждения розетки при подключении чрезмерно мощного устройства минимальны в правильно спроектированной бытовой проводке.

Это полезное свойство обеспечено:

  • установкой автоматов;
  • применением в мощных электроприборах вилок, которые физически не могут подключаться к обычным розеткам (механическая блокировка).

Своеобразным вариантом механической блокировки можно считать довольно популярное прямое соединение мощного стационарного устройства (кондиционер, бойлер) с сетью без использования розеток.

По таблице

Упрощенным вариантом расчёта, является примерный подсчёт с использованием данной таблицы или адаптировав её под свою ситуацию.

В данной таблице указана каждодневная работа электрических приборов на максимальной мощности, в реальности потребление может отличаться. Некоторые приборы могут работать несколько часов в неделю или месяц, поэтому лучше всего исходить из реальной ситуации на месте.

Табличная форма позволяет наглядно понять, какой прибор потребляет больше всего энергии, проанализировать возможность сокращения работы тех или иных приборов, перейти на более энергоэффективные устройства или отказаться от использования некоторых приборов.

По формуле

Также можно рассчитать потребление энергии при помощи тока нагрузки и напряжения в сети. Тем более это удобно, когда вы знаете потребляемый ток, но не знаете мощность прибора. В такой ситуации, по закону Ома для начала определяют максимальную потребляемую мощность прибора: P=I(ток)*U(напряжение). А затем, рассчитывают потребляемую мощность в час: Pч = P(мощность)*t (1 час).

На основании расчёта по этой формуле, можно также составить таблицу и проанализировать потребление энергии в данном помещении, тогда станет понятно, какой прибор самый энергозатратный.

Онлайн-калькулятором

Самым простым и удобным инструментом для расчета электрической энергии является бесплатный онлайн-калькулятор.

Он позволяет посчитать потребляемую мощность как для одного прибора, так и для всех устройств в жилом помещении. Для этого не нужно иметь специального опыта и знаний. Достаточно ввести информацию в каждое поле: цену за кВт электрической энергии в вашем регионе, мощность каждого прибора и период, за который вы хотите посчитать потребление.

Пересчет мощности в ток для однофазной сети

Расчет тока выполняется обычно в процессе подбора автомата, обслуживающего мощный потребитель типа прямоточного водонагревателя.

На основании выражений (1) и (2) задача решается в одно действие. Для этого достаточно разделить мощность на напряжение.

Величина мощности приводится в техническом описании устройства или же указывается прямо на его корпусе. Напряжение принимается равным 220 В, что создает некоторый запас расчета.

Например, при мощности 3000 Вт в соответствии с приведенным правилом получаем ток в 3000/220 = 13,7 А, что указывает на необходимость применения 16-амперного защитного автомата.

При указании мощности в киловаттах в расчет добавляется одно действие: необходимо предварительно перевести киловатты в ватты с учетом формулы (3).

Например, нагреватель имеет мощность 2,8 кВт. Тогда расчет тока выполняется следующим образом:

  • W = 2,8*1000 = 2800 Вт;
  • I = W/220 = 12,7 А.

Если мощность указывается в ВА или кВА, то выкладка не меняется, т.е. 3000/220 = 13,7 А (во втором случае предварительно переводим кВА в простые ВА, т.е. 3 кВА = 3*1000 = 3000 ВА).

Главной особенностью в данном случае становится то, что с учетом типового для бытовых устройств cosφ = 0,85 полезную работу будет выполнять 11,6 А (т.е. 85% всего тока), тогда как оставшиеся 2,1 А являются реактивным током, который бесполезно расходуется на разогрев проводов.

Введение в тему определения величин

Общепринятой единицей при измерении мощности считается ватт (Вт). Этот параметр обычно описывает скорость преобразования или потребления энергии. По определению мощность — это отношение работы (затраченной энергии) к времени, в течение которого она выполняется. В свою очередь, единицей измерения энергии в международной системе измерения единиц (СИ) всегда являлся Джоуль.

Значение «1 ватт», о котором идет речь, соответствует работе в один Джоуль, произведенной за 1 секунду (Дж/с). Скажем, в электротехнике существуют специальные приборы ваттметры, которыми измеряют мощность электрического тока или электромагнитного сигнала.

Свое название единица получила по фамилии шотландско-ирландского изобретателя Джеймса Уатта (Ватта). Этот создатель первой паровой машины впервые применил её в описании возможностей силовой машины. В обращение ватт был принят в 1882 году и в основном заменил традиционные расчетные единицы, существовавшие до этого: фут∙фунт-силу в минуту и тягловую лошадиную силу. Первая единица мощности соответствовала 2260 ваттам. Что касается второй, она применяется и в настоящее время: «метрическая лошадиная сила» равна примерно 735 Вт.

Как единица, получившая свое название по имени ученого, она подчиняется правилам написания, изначально принятым в системе СИ. Наименование ватт пишется со строчной, а обозначение Вт (W), в том числе в обозначении внесистемных единиц, – с заглавной буквы.

Применение ватта не ограничивается областью электротехники, им измеряется крутящий момент силовых установок, поток тепловой и акустической энергии, интенсивность ионизирующих излучений.

Один ватт – много это или мало? Мощность 1 Вт обычно имеют передатчики мобильных телефонов. Лампы накаливания, используемые в бытовых светильниках, потребляют мощность 25, 40, 60, 100 Вт, телевизор и холодильник 50–55, микроволновка и пылесос 1000, а стиральная машина 2500 Вт.

Часто на практике требуется преобразовать ватты в киловатты или, наоборот, значения киловатт перевести в ватты.

Быстрая оценка токов и мощностей

Предельная простота исходных соотношений (1) и (2) позволяет заметно упростить выполнение текущих расчетов при дополнительном условии задания мощности в киловаттах.

В основу упрощения расчетов положен факт того, что с учетом примерного постоянства напряжения в бытовой однофазной 220-вольтовой сети пересчет мощности в ток можно выполнить умножением мощности на постоянный коэффициент.

Для определения такого коэффициента целесообразно воспользоваться тем, что при задании W в кВт имеем довольно точную оценку I = W*1000/220 = 4,5*W.

Например, при W = 2,8 кВт получаем 4,5*2,8= 12,6 А, т.е. выкладки выполняются быстрее и существенно удобнее по сравнению с “правильным” расчетом при незначительной потерей точности.

Аналогичным образом столь же легко показать, что W = 0,22*I кВт. Необходимо помнить о том, что ток I указывается в амперах.

Таким образом, получаем простые правила:

  • один кВт соответствует 4,5 А тока;
  • один ампер соответствует мощности 0,22 кВт.

Последнее правило часто закругляют до уровня один ампер эквивалентен 0,2 кВт.

Связь мощности и тока в трехфазной сети

Принцип расчета мощности и тока для трехфазных сетей остается прежним. Главное отличие заключается в незначительной модернизации расчетных формул, что позволяет полноценно учесть особенности построения этого вида проводки.

В качестве базового соотношения традиционно берется выражение:

W =1,73* U*I, (4)

причем U в данном случае представляет собой линейное напряжение, т.е. составляет U = 380 В.

Из выражения (4) вытекает выгодность применения в обоснованных случаях трехфазных сетей: при такой схеме построения проводки токовая нагрузка на отдельные провода падает в корень из трех раз при одновременном трехкратном увеличении отдаваемой в нагрузку мощности.

Для доказательства последнего факта достаточно заметить, что 380/220 = 1,73, а с учетом первого числового коэффициента получаем 1,73 * 1,73 = 3.

Приведенные выше правила связи токов и мощности для трехфазной сети формулируются в следующей форме:

  • один кВт соответствует 1,5 А потребляемого тока;
  • один ампер соответствует мощности 0,66 кВт.

Укажем на то, что все сказанное справедливо в отношении случая соединения нагрузки так называемой звездой, что наиболее часто встречается на практике.

Возможно еще соединение треугольником, которое меняет правила расчета, но оно встречается достаточно редко и в этой ситуации целесообразно обратиться к специалисту.

Особенности расчета

Несмотря на то что мощность электроприборов зачастую указывается на их корпусах, все же нередко приходится самостоятельно подсчитывать, сколько электроэнергии потребляет та или иная бытовая техника. Чтобы не ошибиться при подсчете и прийти к правильному результату, нужно не только знать об отличиях между кВт и кВт-часами, но и уметь переводить эти величины из одной в другую. Например, мощность часто требуется перевести в энергию и наоборот.

Прежде чем приступать к подсчету энергии, которая потребляется тем или иным бытовым электрическим прибором, необходимо приготовить калькулятор, так как цифры могут получиться такими, что оперировать ими в уме будет довольно трудно.

Перед переводом мощности в энергию, то есть кВт в кВт-час, необходимо уточнить, что предварительно измерялось. Если проводились измерения показаний счетчика, то в этом случае все будет крайне просто. Достаточно лишь исправить «киловатт» на «киловатт-час».

Вам это будет интересно Физический смысл полного закона Ома для замкнутой цепи

Показания счетчика — это и есть энергия, которую потребляют электрические приборы за единицу времени. Измеряется она также в киловатт-часах. Просто в быту название этой единицы утратило слово «час». В результате она сокращенно стала называться просто кВт. Довольно часто владельцы какого-либо бытового электрического прибора переводят кВт в кВт-часы для того, чтобы определить, сколько энергии израсходуется во время его работы и, следовательно, как часто его нужно включать.

Если прибор будет потреблять слишком много энергии, то использовать придется редко, чтобы сэкономить электроэнергию. Чтобы безошибочно определить, сколько энергии потребуется тому или иному оборудованию, например, электрообогревателю, нужно знать время его работы и мощность, которая, как правило, указывается на корпусе. Например, если мощность прибора составляет 2 кВт, а работает он 3 часа, то в результате простого математического умножения можно выяснить, что суммарное потребление электроэнергии за это время — 6 киловатт-часов.

Небольшие проблемы могут возникнуть при подсчете потребляемой энергии, если мощность указана не в кВт, а в других единицах измерения. Ситуация усугубится, если еще и время измеряется не в часах, а, например, в минутах. Тогда перед тем как приступать к расчетам, необходимо перевести единицы мощности в кВт, а единицы времени — в часы. Только в этом случае результаты подсчета будут правильными.

В качестве примера можно взять обыкновенную лампу, производители которой утверждают, что ее мощность равна 100 Вт. Допустим, нужно определить, сколько используется электроэнергии, если она будет гореть целые сутки. Следует определить мощность лампочки в киловатт. Поскольку Вт (ватт) — это единица, которая является тысячной частью киловатта, нужно просто разделить это значение мощности лампочки на 1000.

То есть 100 Вт делится на 1000 и получается в результате 0,1 киловатта. На этом перевод из одной единицы мощности в другую заканчивается.

Необходимо перевести в нужную единицу показатель времени. По условию требуется определить, сколько энергии израсходует осветительный прибор за сутки. Здесь просто: в сутках 24 часа, и поэтому именно эту цифру можно считать результатом перевода единиц времени. Остается только умножить полученные в результате перевода числа и узнать, сколько энергии будет израсходовано лампочкой. 0,1 киловатт умножается на 24 часа, и в результате получается число — 2,4. Это означает, что энергопотребление прибора составляет 2,4 кВт·ч.

Вам это будет интересно Эксплуатация мультиметра DT- 832: инструкция по применению

Так можно определить не только количество энергии, которое потребляет какой-то один прибор, но и общее энергопотребление всего электрооборудования, которое есть в доме. Главное, знать продолжительность его работы и мощность.

Немецкий тюнер построит три варианта электрического Porsche 911: Видео

Немецкое тюнинговое ателье RUF приступило к разработке концептуальных электромобилей, построенных на базе спорткара Porsche 911. Проект осуществляется совместно с компанией Siemens, являющейся поставщиком инверторов и электромоторов для этих машин, и Федеральным министерством окружающей среды Германии. Первые десять прототипов будут представлены в первой половине этого года и оснащены специальной системой, записывающей данные о работе всего оборудования автомобилей.

Компания RUF построит три варианта электромобилей. Первый будет оснащен одним электромотором мощностью 241 лошадиная сила и комплектом литий-ионных аккумуляторов емкостью 29 киловатт-часов, которые позволят автомобилю проехать без подзарядки до 150 километров. Разработчики ожидают, что такая машина сможет ускоряться с нуля до "сотни" за семь секунд, а ее максимальная скорость составит 220 километров в час.

Вторая версия получит два электромотора суммарной мощностью 335 лошадиных сил и двухступенчатую коробку передач. Двигатели будут питаться от более мощных литиевых батарей емкостью 36,6 киловатт-часов, оснащенных жидкостным охлаждением и подогревом. Такой электрокар сможет проехать на одном заряде около 200 километров. На разгон до ста километров машине потребуется пять секунды. При этом максимальная скорость будет такой же как и у первого варианта прототипа — 220 километров в час.

Третий вариант прототипа будет полностью повторять предыдущий за исключением чуть меньшей максимальной скорости (180 километров в час), а также наличия системы перераспределения крутящего момента и двух раздельных мотор-редукторов переменного тока на задней оси.

Испытания автомобилей в реальных дорожных условиях будут проходить в Германии. Когда подобные электрокары на базе спорткаров Porsche могут появиться в продаже, пока не сообщается.

Ранее сама компания Porsche объявила о начале собственных испытаний электрокаров. Автомобили на базе спорткара Boxster, оснащенные 240-сильными электродвигателями и аккумуляторами емкостью 29 киловатт-часов, также планируется испытывать в Германии. Однако пока производитель не намерен выпускать спортивные электромобили серийно. Вместо этого, результаты тестов будут использованы при разработке будущих моделей.

формула, единицы измерения. В чем измеряется мощность электрического тока

В 1882 году Британская научная ассоциация приняла решения начать использовать новую единицу измерения под названием «ватт». Для чего она используется сегодня, чему равна и по какой формуле ее можно вычислить? Давайте найдем ответы на все эти вопросы.

Ватт - единица измерения чего?

Начиная с того судьбоносного года, когда британцы ввели традицию использования ватта, постепенно во всем мире стали переходить на него, взамен устаревших и непрактичных лошадиных сил. С появлением системы СИ он был внесен в нее и стал использоваться повсеместно.

Итак, какая физическая величина имеет единицу измерения «ватт»? Вспомним уроки физики: правильный ответ на этот вопрос - мощность.

Свое название ватт получил в честь своего «отца» - шотландца Джеймса Ватта. В сокращении данная единица пишется всегда с большой буквы - Вт (W - согласно международном нормам системы СИ), а полностью - с маленькой «ватт» (watt).

Являясь не основной, а производной единицей (согласно стандарту СИ), рассматриваемая единица находится в зависимости от метра, килограмма и секунды. На практике это означает, что один ватт - это мощность, при которой совершается один джоуль работы за одну секунду времени. То есть, получается следующая зависимость: 1Вт = 1Дж/1с = 1Н х м/с = кг х м 2 /с 3 = кг х м 2 х с -3.

Кроме перечисленных выше, ватт связан с несистемными единицами. Например, с калорией. Так 1 Вт = 859,845227858985 кал/час. Данное соотношение важно, когда речь идет о вычислении количество теплоты, вырабатываемой электрическим обогревателем.

Формула

Итак, ватт - единица измерения мощности. Давайте же рассмотрим, по какой формуле ее можно вычислять.

Как уже было сказано выше, мощность зависит от работы и времени. Получается следующая формула: Р = A/t (мощность равна частному от деления работы на время).

Зная, что формула работы равна: А = F х S (где F - сила, S - расстояние), можно использовать эти данные.

В результате получаем формулу: Р = F х S /t. А поскольку S /t - это скорость (V), то мощность допустимо вычислять и так: Р = F х V

Взаимозависимость ампера, ватта, вольта

Единица измерения, которую мы рассматриваем, находится в прямой связи с такими величинами как напряжение (измеряется в вольтах) и сила тока (измеряется в амперах).

1 ватт - это мощность постоянного электрического тока при напряжении в 1 В и силе в 1А.

В виде формулы это выглядит таким образом: Р = І х U.

Ватты, киловатты, мегаватты и микроватты

Узнав, что ватт - единица измерения мощности, от каких величин она зависит и по каким формулам ее проще вычислять, стоит обратить внимание на такие понятия как киловатт, мегаватт и микроватт.

Поскольку Вт - величина весьма скромная (такова мощность передатчика любого мобильного телефона), в сфере электроэнергетики чаще принято применять киловатт (кВт).

Судя по стандартной для системы СИ приставке «кило», можно сделать вывод, что 1 кВт = 1000 Вт = 10 3 Вт. Поэтому для перевода ватт в киловатты нужно просто их количество делить на тысячу или наоборот, в случае, если киловатты переводятся в ватты.

К примеру, обычный легковой автомобиль имеет мощность в 60 000 ватт. Чтобы перевести это в киловатты, нужно разделить 60 000 на 1000 и в результате получится 60 кВт.

Киловатты являются общепринятой единицей для измерения мощности электроэнергии. При этом иногда применяется большая кратная единица ватта. Речь идет о мегаватте - МВт. Он равен 1 000 000 ватт (10 6) или 1000 киловатт (10 3).

К примеру, британский электропоезд Eurostar обладает мощностью в 12 мегаватт. То есть, это 12 000 000 ватт. Не удивительно, что он является самым быстрым в Великобритании.

Несмотря на скромные размеры иногда эта единица оказывается слишком большой для измерения мощности определенных предметов, поэтому наравне с кратными в системе Си выделяются и дольные единицы ватта. Наиболее часто используемой из них является микроватт (мкВт - пишется со строчной буквы, чтобы не путать с мегаваттом). Он равен одной миллионной части ватта (10 -6). Обычно данная единица применяется при расчете мощности работы электрокардиографов.

Помимо трех вышеперечисленных, существует еще около двух десятков других кратных и дольных единиц ватта. Однако чаще всего они используются в теоретических расчетах, а не на практике.

Ватт-час

Рассматривая особенности ватта (единицы измерения мощности), давайте обратим внимание на ватт-час (Вт·ч). Этот термин используется для измерения такой величины, как энергия (иногда в ватт-часах измеряется работа).

1 ватт-час равен количеству работы, выполненной на протяжении одного часа при мощности в 1 ватт.

Поскольку рассматриваемая единица довольно небольшая, для измерения электричества чаще применяется киловатт-час (кВт·ч). Он равен 1000 ватт-часов или 3600 Вт·с.

Обратите внимание, что мощность вырабатываемой на электростанциях энергии измеряется в киловаттах (иногда мегаваттах), но для потребителей ее количество исчисляется в киловатт-часах (реже в мегаватт-часах, если речь идет о мегаполисах или огромных предприятиях).

Обратите внимание, что помимо киловатт-часа и мегаватт-часа, ватт-час имеет точно такие же кратные и дольные единицы, как и обычный ватт.

Какой прибор называется ваттметром

Сравнив определение ватта (единица измерения мощности) и ватт-часа (единица энергии или работы), обратите внимание на такой прибор как ваттметр (ваттметр, wattmeter). Он применяется для измерения активной мощности электрического тока.

Классический прибор такого рода состоит из четырех контактов, два из которых используются для включения ваттметра в электрическую цепь последовательно с той его частью, потребляемая мощность которой измеряется на данный момент. Остальные два контакта подключаются параллельно к ней.

Ваттметры обычно создаются на основе электродинамических механизмов.

Ватт, согласно системе СИ – единица измерения мощности. В наши дни используется для измерения мощности всех электрических и не только приборов.

Джеймс Уатт и его универсальная паровая машина.

Что такое Ватт

Впервые эта величина была предложена для измерения мощности в 1882 году. Название единицы было дано в честь известного английского (а если по месту рождения, то шотландского) изобретателя Джеймса Уатта (James Watt). Одного из самых известных ученых в мире, создавшего универсальную паровую машину, доработав машину Ньюкомена. Однако, наибольшую известность ему принесла единица измерения, названная в его честь. До этого мощность рассчитывалась в лошадиных силах (л.с.), которые, кстати, были предложены для использования самим Уаттом. В наше же время, л.с. используются в основном для измерения мощности только в автомобилях, хотя бывают редкие исключения.

Согласно теории физики, мощность – это скорость расходования энергии, выраженная в отношении энергии ко времени: 1 Вт = 1 Дж/1 с. Один ватт равен отношению одного джоуля (единице измерения работы) к одной секунде. На сегодняшний день для обозначения мощности электроприборов чаще применяется единица измерения киловатт (сокращенное обозначение – кВт). Несложно догадаться, сколько ватт в киловатте – приставка «кило» в системе СИ обозначает величину, полученную в результате умножения на тысячу.

Ниже рекомендуем посмотреть простое и понятное видео о предмете нашего разговора, думаю станет все понятно, если на слух вы воспринимаете информацию легче, да и в любом случае для закрепления материала, видео может быть полезным.

Ватты в киловатты
То есть, 1 кВт=1000 Вт (один киловатт равен тысячи ваттам). Обратный перевод так же прост: можно разделить число на тысячу либо переместить запятую на три цифры левее. Например:

  • мощность стиральной машины 2100 Вт = 2,1 кВт;
  • мощность кухонного блендера 1,1 кВт = 1100 Вт;
  • мощность электродвигателя 0,55 кВт = 550 Вт и т.д.

Килоджоули в киловатты и киловатт-час
Иногда наших читателей интересует, как перевести килоджоули в киловатты. Для ответа на этот вопрос, вернемся к базовому отношению ватт и джоулей: 1 Вт = 1 Дж/1 с. Нетрудно догадаться, что:
1 килоджоуль = 0.0002777777777778 киловатт-час (в одном часе 60 минут, а в одной минуте 60 секунд, следовательно в часе 3600 секунд, а 1/3600= 0.000277778).

1 Вт= 3600 джоуль в час

Ватты в лошадиные силы
1 лошадиная сила =736 Ватт, следовательно 5 лошадиных сил = 3,68 кВт.

1 киловатт = 1,3587 лошадиных сил.

Ватты в калории
1 джоуль = 0,239 калории, следовательно 239 ккал = 0.0002777777777778 киловатт-час.

Не путать с киловатт-час

Наверное, каждый хотя бы раз в жизни слышал о такой единице, как киловатт-час (кВт*ч). С помощью этой единицы измеряется работа, совершаемая устройством за единицу времени. Для того чтобы понять её отличие от киловатта, приведем в пример домашний телевизор с потребляемой мощностью в 250 Вт. Если присоединить его к электрическому счетчику и включить, то ровно через час на счетчике будет показано, что телевизор израсходовал 0,25 кВт электроэнергии. То есть, потребление телевизора равно 0,25 кВт*ч. Прибор с такой величиной потребления, оставленный во включенном состоянии на 4 часа, «сожжёт», соответственно, 1 кВт энергии. Суточное потребление того или иного прибора зависит от особенностей его конструкции и иногда может оказаться, что приборы, которые нам кажутся наименее «прожорливыми», на самом деле составляют большую долю от общих расходов на электричество. Так, к примеру, обычный телевизор имеет в 4 раза более низкое потребление по сравнению с 100 Вт лампой накаливания. В свою очередь, электрический чайник «сжигает» в три раза больше света, чем такая лампочка. Среднее суточное энергопотребление персонального компьютера – около 14 кВт, а холодильника – до 1,5 кВт.

Если вам нужно единицы измерения мощности привести в одну систему, вам пригодится наш перевод мощности – конвертер онлайн. А ниже вы сможете почитать, в чем измеряется мощность.

Мощность – физическая величина, равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

В чем измеряется мощность?

Единицы измерения мощности, которые известны каждому школьнику и являются принятыми в международном сообществе – ватты. Названы так в честь ученого Дж. Уатта. Обозначаются латинской W или вт.

1 Ватт – единица измерения мощности, при которой за секунду происходит работа, равная 1 джоулю. Ватт равен мощности тока, сила которого 1 ампер, а напряжение – 1 вольт. В технике, как правило, применяются мегаватты и киловатты. 1 киловатт равен 1000 ватт.
Измеряется мощность и в эрг в секунду. 1 эрг в сек. Равен 10 в минус седьмой степени ватт. Соответственно, 1 ватт равен 10 в седьмой степени эрг/сек.

А еще единицей измерения мощности считается внесистемная «лошадиная сила». Она была введена в оборот еще в восемнадцатом веке и продолжает до сих пор применяться в автомобилестроении. Обозначается она так:

  • Л.С. (в русском),
  • HP (в английском).
  • PS (в немецком),
  • CV (во французском).

При переводе мощности помните, что в рунете существует невообразимая путаница при конверте лошадиных сил в ватты. В России, странах СНГ и некоторых других государствах 1 л.с. равняется 735, 5 ватт. В Англии и Америке 1 hp равняется 745, 7 ватт.

Из письма клиента:
Подскажите, ради Бога, почему мощность ИБП указывается в Вольт-Амперах, а не в привычных для всех киловаттах. Это сильно напрягает. Ведь все уже давно привыкли к киловаттам. Да и мощность всех приборов в основном указана в кВт.
Алексей. 21 июнь 2007

В технических характеристиках любого ИБП указаны полная мощность [кВА] и активная мощность [кВт] – они характеризуют нагрузочную способность ИБП. Пример, см. фотографии ниже:

Мощность не всех приборов указана в Вт, например:

  • Мощность трансформаторов указывается в ВА:
    http://www.mstator.ru/products/sonstige/powertransf (трансформаторы ТП: см приложение)
    http://metz.by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ: см приложение)
  • Мощность конденсаторов указывается в Варах:
    http://www.elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39: см приложение)
    http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК: см приложение)
  • Примеры других нагрузок - см. приложения ниже.

Мощностные характеристики нагрузки можно точно задать одним единственным параметром (активная мощность в Вт) только для случая постоянного тока, так как в цепи постоянного тока существует единственный тип сопротивления – активное сопротивление.

Мощностные характеристики нагрузки для случая переменного тока невозможно точно задать одним единственным параметром, так как в цепи переменного тока существует два разных типа сопротивления – активное и реактивное. Поэтому только два параметра: активная мощность и реактивная мощность точно характеризуют нагрузку.

Принцип действия активного и реактивного сопротивлений совершенно различный. Активное сопротивление – необратимо преобразует электрическую энергию в другие виды энергии (тепловую, световую и т.д.) – примеры: лампа накаливания, электронагреватель (параграф 39, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007).

Реактивное сопротивление – попеременно накапливает энергию затем выдаёт её обратно в сеть – примеры: конденсатор, катушка индуктивности (параграф 40,41, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007).

Дальше в любом учебнике по электротехнике Вы можете прочитать, что активная мощность (рассеиваемая на активном сопротивлении) измеряется в ваттах, а реактивная мощность (циркулирующая через реактивное сопротивление) измеряется в варах; так же для характеристики мощности нагрузки используют ещё два параметра: полную мощность и коэффициент мощности. Все эти 4 параметра:

  1. Активная мощность: обозначение P , единица измерения: Ватт
  2. Реактивная мощность: обозначение Q , единица измерения: ВАр (Вольт Ампер реактивный)
  3. Полная мощность: обозначение S , единица измерения: ВА (Вольт Ампер)
  4. Коэффициент мощности: обозначение k или cosФ , единица измерения: безразмерная величина

Эти параметры связаны соотношениями: S*S=P*P+Q*Q, cosФ=k=P/S

Также cosФ называется коэффициентом мощности (Power Factor PF )

Поэтому в электротехнике для характеристики мощности задаются любые два из этих параметров так как остальные могут быть найдены из этих двух.

Например, электромоторы, лампы (разрядные) - в тех. данных указаны P[кВт] и cosФ:
http://www.mez.by/dvigatel/air_table2.shtml (двигатели АИР: см. приложение)
http://www.mscom.ru/katalog.php?num=38 (лампы ДРЛ: см. приложение)
(примеры технических данных разных нагрузок см. приложение ниже)

То же самое и с источниками питания. Их мощность (нагрузочная способность) характеризуется одним параметром для источников питания постоянного тока – активная мощность (Вт), и двумя параметрами для ист. питания переменного тока. Обычно этими двумя параметрами являются полная мощность (ВА) и активная (Вт). См. например параметры ДГУ и ИБП.

Большинство офисной и бытовой техники, активные (реактивное сопротивление отсутствует или мало), поэтому их мощность указывается в Ваттах. В этом случае при расчёте нагрузки используется значение мощности ИБП в Ваттах. Если нагрузкой являются компьютеры с блоками питания (БП) без коррекции входного коэффициента мощности (APFC), лазерный принтер, холодильник, кондиционер, электромотор (например погружной насос или мотор в составе станка), люминисцентные балластные лампы и др. – при расчёте используются все вых. данные ибп: кВА, кВт, перегрузочные характеристики и др.

См. учебники по электротехнике, например:

1. Евдокимов Ф. Е. Теоретические основы электротехники. - М.: Издательский центр "Академия", 2004.

2. Немцов М. В. Электротехника и электроника. - М.: Издательский центр "Академия", 2007.

3. Частоедов Л. А. Электротехника. - М.: Высшая школа, 1989.

Так же см. AC power, Power factor, Electrical resistance, Reactance http://en.wikipedia.org
(перевод: http://electron287.narod.ru/pages/page1.html)

Приложение

Пример 1: мощность трансформаторов и автотрансформаторов указывается в ВА (Вольт·Амперах)

http://metz.by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ)


АОСН-2-220-82
Латр 1.25 АОСН-4-220-82
Латр 2.5 АОСН-8-220-82





АОСН-20-220



АОМН-40-220




http://www.gstransformers.com/products/voltage-regulators.html (ЛАТР / лабораторные автотрансформаторы TDGC2)

Пример 2: мощность конденсаторов указывается в Варах (Вольт·Амперах реактивных)

http://www.elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39)


http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК)

Пример 3: технические данные электромоторов содержат активную мощность (кВт) и cosФ

Для таких нагрузок как электромоторы, лампы (разрядные), компьютерные блоки питания, комбинированные нагрузки и др. - в технических данных указаны P [кВт] и cosФ (активная мощность и коэффициент мощности) или S [кВА] и cosФ (полная мощность и коэффициент мощности) .

http://www.weiku.com/products/10359463/Stainless_Steel_cutting_machine.html
(комбинированная нагрузка – станок плазменной резки стали / Inverter Plasma cutter LGK160 (IGBT)

http://www.silverstonetek.com.tw/product.php?pid=365&area=en (блок питания ПК)

Дополнение 1

Если нагрузка имеет высокий коэффициент мощности (0.8 ... 1.0), то её свойства приближаются к активной нагрузке. Такая нагрузка является идеальной как для сетевой линии, так и для источников электроэнергии, т.к. не порождает реактивных токов и мощностей в системе.

Поэтому во многих странах приняты стандарты нормирующие коэффициент мощности оборудования.

Дополнение 2

Оборудование однонагрузочное (например, БП ПК) и многосоставное комбинированное (например, фрезерный промышленный станок, имеющий в составе несколько моторов, ПК, освещение и др.) имеют низкие коэффициенты мощности (менее 0.8) внутренних агрегатов (например, выпрямитель БП ПК или электромотор имеют коэффициент мощности 0.6 .. 0.8). Поэтому в настоящее время большинство оборудования имеет входной блок корректора коэффициента мощности. В этом случае входной коэффициент мощности равен 0.9 ... 1.0, что соответствует нормативным стандартам.

Дополнение 3. Важное замечание относительно коэффициента мощности ИБП и стабилизаторов напряжения

Нагрузочная способность ИБП и ДГУ нормирована на стандартную промышленную нагрузку (коэффициент мощности 0.8 с индуктивным характером). Например, ИБП 100 кВА / 80 кВт. Это означает, что устройство может питать активную нагрузку максимальной мощности 80 кВт, или смешанную (активно-реактивную) нагрузку максимальной мощности 100 кВА с индуктивным коэффициентом мощности 0.8.

В стабилизаторах напряжения дело обстоит иначе. Для стабилизатора коэффициент мощности нагрузки безразличен. Например, стабилизатор напряжения 100 кВА. Это означает, что устройство может питать активную нагрузку максимальной мощности 100 кВт, или любую другую (чисто активную, чисто реактивную, смешанную) мощностью 100 кВА или 100 кВАр с любым коэффициентом мощности емкостного или индуктивного характера. Обратите внимание, что это справедливо для линейной нагрузки (без высших гармоник тока). При больших гармонических искажениях тока нагрузки (высокий КНИ) выходная мощность стабилизатора снижается.

Дополнение 4

Наглядные примеры чистой активной и чистой реактивных нагрузок:

  • К сети переменного тока 220 VAC подключена лампа накаливания 100 Вт – везде в цепи есть ток проводимости (через проводники проводов и вольфрамовый волосок лампы). Характеристики нагрузки (лампы): мощность S=P~=100 ВА=100 Вт, PF=1 => вся электрическая мощность активная, а значит она целиком поглащается в лампе и превращается в мощность тепла и света.
  • К сети переменного тока 220 VAC подключен неполярный конденсатор 7 мкФ – в цепи проводов есть ток проводимости, внутри конденсатора идёт ток смещения (через диэлектрик). Характеристики нагрузки (конденсатора): мощность S=Q~=100 ВА=100 ВАр, PF=0 => вся электрическая мощность реактивная, а значит она постоянно циркулирует от источника к нагрузке и обратно, опять к нагрузке и т.д.
Дополнение 5

Для обозначения преобладающего реактивного сопротивления (индуктивного либо ёмкостного) коэффициенту мощности приписывается знак:

+ (плюс) – если суммарное реактивное сопротивление является индуктивным (пример: PF=+0.5). Фаза тока отстаёт от фазы напряжения на угол Ф.

- (минус) – если суммарное реактивное сопротивление является ёмкостным (пример: PF=-0,5). Фаза тока опережает фазу напряжения на угол Ф.

Дополнение 6

Дополнительные вопросы

Вопрос 1:
Почему во всех учебниках электротехники при расчете цепей переменного тока используют мнимые числа / величины (например, реактивная мощность, реактивное сопротивление и др.), которые не существуют в реальности?

Ответ:
Да, все отдельные величины в окружающем мире – действительные. В том числе температура, реактивное сопротивление, и т.д. Использование мнимых (комплексных) чисел – это только математический приём, облегчающий вычисления. В результате вычисления получается обязательно действительное число. Пример: реактивная мощность нагрузки (конденсатора) 20кВАр – это реальный поток энергии, то есть реальные Ватты, циркулирующие в цепи источник–нагрузка. Но что бы отличить эти Ватты от Ваттов, безвозвратно поглащаемых нагрузкой, эти «циркулирующие Ватты» решили называть Вольт·Амперами реактивными .

Замечание:
Раньше в физике использовались только одиночные величины и при расчете все математические величины соответствовали реальным величинам окружающего мира. Например, расстояние равно скорость умножить на время (S=v*t). Затем с развитием физики, то есть по мере изучения более сложных объектов (свет, волны, переменный электрический ток, атом, космос и др.) появилось такое большое количество физических величин, что рассчитывать каждую в отдельности стало невозможно. Это проблема не только ручного вычисления, но и проблема составления программ для ЭВМ. Для решения данное задачи близкие одиночные величины стали объединять в более сложные (включающие 2 и более одиночных величин), подчиняющиеся известным в математике законам преобразования. Так появились скалярные (одиночные) величины (температура и др.), векторные и комплексные сдвоенные (импеданс и др.), векторные строенные (вектор магнитного поля и др.), и более сложные величины – матрицы и тензоры (тензор диэлектрической проницаемости, тензор Риччи и др.). Для упрощения рассчетов в электротехнике используются следующие мнимые (комплексные) сдвоенные величины:

  1. Полное сопротивление (импеданс) Z=R+iX
  2. Полная мощность S=P+iQ
  3. Диэлектрическая проницаемость e=e"+ie"
  4. Магнитная проницаемость m=m"+im"
  5. и др.

Вопрос 2:

На странице http://en.wikipedia.org/wiki/Ac_power показаны S P Q Ф на комплексной, то есть мнимой / несуществующей плоскости. Какое отношение это все имеет к реальности?

Ответ:
Проводить расчеты с реальными синусоидами сложно, поэтому для упрощения вычислений используют векторное (комплексное) представление как на рис. выше. Но это не значит, что показанные на рисунке S P Q не имеют отношения к реальности. Реальные величины S P Q могут быть представлены в обычном виде, на основе измерений синусоидальных сигналов осциллографом. Величины S P Q Ф I U в цепи переменного тока «источник-нагрузка» зависят от нагрузки. Ниже показан пример реальных синусоидальных сигналов S P Q и Ф для случая нагрузки состоящей из последовательно соединённых активного и реактивного (индуктивного) сопротивлений.

Вопрос 3:
Обычными токовыми клещами и мультиметром измерен ток нагрузки 10 A, и напряжение на нагрузке 225 В. Перемножаем и получаем мощность нагрузки в Вт: 10 A · 225В = 2250 Вт.

Ответ:
Вы получили (рассчитали) полную мощность нагрузки 2250 ВА. Поэтому ваш ответ будет справедлив только, если ваша нагрузка чисто активная, тогда действительно Вольт·Ампер равен Ватту. Для всех других типов нагрузок (например электромотор) – нет. Для измерения всех характеристик любой произвольной нагрузки необходимо использовать анализатор сети, например APPA137:

См. дополнительную литературу, например:

Евдокимов Ф. Е. Теоретические основы электротехники. - М.: Издательский центр "Академия", 2004.

Немцов М. В. Электротехника и электроника. - М.: Издательский центр "Академия", 2007.

Частоедов Л. А. Электротехника. - М.: Высшая школа, 1989.

AC power, Power factor, Electrical resistance, Reactance
http://en.wikipedia.org (перевод: http://electron287.narod.ru/pages/page1.html)

Теория и расчёт трансформаторов малой мощности Ю.Н.Стародубцев / РадиоСофт Москва 2005 г. / rev d25d5r4feb2013

Здравствуйте! Для вычисления физической величины, называемой мощностью, пользуются формулой, где физическую величину - работу делят на время, за которое эта работа производилась.

Выглядит она так:

P, W, N=A/t, (Вт=Дж/с).

В зависимости от учебников и разделов физики, мощность в формуле может обозначаться буквами P, W или N.

Чаще всего мощность применяется, в таких разделах физики и науки, как механика, электродинамика и электротехника. В каждом случае, мощность имеет свою формулу для вычисления. Для переменного и постоянного тока она тоже различна. Для измерения мощности используют ваттметры.

Теперь вы знаете, что мощность измеряется в ваттах. По-английски ватт - watt, международное обозначение - W, русское сокращение - Вт. Это важно запомнить, потому что во всех бытовых приборах есть такой параметр.

Мощность - скалярная величина, она не вектор, в отличие от силы, которая может иметь направление. В механике, общий вид формулы мощности можно записать так:

P=F*s/t, где F=А*s,

Из формул видно, как мы вместо А подставляем силу F умноженную на путь s. В итоге мощность в механике, можно записать, как силу умноженную на скорость. К примеру, автомобиль имея определенную мощность, вынужден снижать скорость при движении в гору, так как это требует большей силы.

Средняя мощность человека принята за 70-80 Вт. Мощность автомобилей, самолетов, кораблей, ракет и промышленных установок, часто, измеряют в лошадиных сил ах. Лошадиные силы применяли еще задолго до внедрения ватт. Одна лошадиная сила равна 745,7Вт. Причем в России принято что л. с. равна 735,5 Вт.

Если вас вдруг случайно спросят через 20 лет в интервью среди прохожих о мощности, а вы запомнили, что мощность - это отношение работы А, совершенной в единицу времени t. Если сможете так сказать, приятно удивите толпу. Ведь в этом определении, главное запомнить, что делитель здесь работа А, а делимое время t. В итоге, имея работу и время, и разделив первое на второе, мы получим долгожданную мощность.

При выборе в магазинах, важно обращать внимание на мощность прибора. Чем мощнее чайник, тем быстрее он погреет воду. Мощность кондиционера определяет, какой величины пространство он сможет охлаждать без экстремальной нагрузки на двигатель. Чем больше мощность электроприбора, тем больше тока он потребляет, тем больше электроэнергии потратит, тем больше будет плата за электричество.

В общем случае электрическая мощность определяется формулой:

где I - сила тока, U-напряжение

Иногда даже ее так и измеряют в вольт-амперах, записывая, как В*А. В вольт-амперах меряют полную мощность, а чтобы вычислить активную мощность нужно полную мощность умножить на коэффициент полезного действия(КПД) прибора, тогда получим активную мощность в ваттах.

Часто такие приборы, как кондиционер, холодильник, утюг работают циклически, включаясь и отключаясь от термостата, и их средняя мощность за общее время работы может быть небольшой.

В цепях переменного тока , помимо понятия мгновенной мощности, совпадающей с общефизической, существуют активная, реактивная и полная мощности. Полная мощность равна сумме активной и реактивной мощностей.

Для измерения мощности используют электронные приборы - Ваттметры. Единица измерения Ватт, получила свое название в честь изобретателя усовершенствованной паровой машины, которая произвела революцию среди энергетических установок того времени. Благодаря этому изобретению развитие индустриального общества ускорилось, появились поезда, пароходы, заводы, использующие силу паровой машины для передвижения и производства изделий.

Все мы много раз сталкивались с понятием мощности. Например, разные автомобили характеризуются разной мощностью двигателя. Также, электроприборы могут иметь различную мощность , даже если они имеют одинаковое предназначение.

Мощность - это физическая величина , характеризующая скорость работы.

Соответственно, механическая мощность - это физическая величина, характеризующая скорость механической работы:

Т. е. мощность - это работа в единицу времени.

Мощность в системе СИ измеряется в ваттах: [N ] = [Вт].

1 Вт - это работа в 1 Дж, совершенная за 1 с.

Существуют и другие единицы измерения мощности, например, такие, как лошадиная сила:

Именно в лошадиных силах чаще всего измеряется мощность двигателя автомобилей.

Давайте вернемся к формуле для мощности: Формула, по которой вычисляется работа, нам известна: Поэтому мы можем преобразовать выражение для мощности:

Тогда в формуле у нас образуется отношение модуля перемещения к промежутку времени. Это, как вы знаете, скорость:

Только обратите внимание, что в получившейся формуле мы используем модуль скорости, поскольку на время мы поделили не само перемещение, а его модуль. Итак, мощность равна произведению модуля силы, модуля скорости и косинуса угла между их направлениями.

Это вполне логично: скажем, мощность поршня можно повысить за счет увеличения силы его действия. Прикладывая бо́льшую силу, он будет совершать больше работы за то же время, то есть увеличит мощность. Но даже если оставить силу постоянной, и заставить поршень двигаться быстрее, он, несомненно, увеличит работу, совершаемую в единицу времени. Следовательно, увеличится мощность.

Примеры решения задач.

Задача 1. Мощность мотоцикла равна 80 л.с. Двигаясь по горизонтальному участку, мотоциклист развивает скорость равную 150 км\ч. При этом, двигатель работает на 75% от своей максимальной мощности. Определите силу трения, действующую на мотоцикл.


Задача 2. Истребитель, под действием постоянной силы тяги, направленной под углом 45° к горизонту, разгоняется от 150 м/с до 570 м/с. При этом, вертикальная и горизонтальная скорость истребителя увеличиваются на одинаковое значение в каждый момент времени. Масса истребителя равна 20 т. Если истребитель разгонялся в течение одной минуты, то какова мощность его двигателя?




Если вам нужно единицы измерения мощности привести в одну систему, вам пригодится наш перевод мощности – конвертер онлайн. А ниже вы сможете почитать, в чем измеряется мощность.

Перевод квт в ква для трехфазных сетей. В чем разница между кВт и кВа? Приближенный перевод кВт в Ква

Киловольт-ампер является единицей определения электрической мощности в спецсистеме СИ и равен 1000 Вольт-ампер. Он применяется как единица, фиксирующая величину абсолютной мощности переменного (или электрического) тока.

Киловатт равен количеству энергии, потребляемой (производимой) устройством, мощностью один киловатт в течении 60 минут и является критерием оценки механической мощности устройства. Перед электриками часто возникает задача перевода одного вида мощности в координаты другого. В качестве примера попробуем перевести кВа в кВт.

Быстрая навигация по статье

Терминология

  • Специалисты называют кВа единицей, характеризующей активную мощность электрического агрегата.
  • кВт отражает реактивные характеристики устройства, передающего энергию потребителям.

При передаче электрической энергии на механические преобразователи происходят потери, которые для разных устройств имеют разные показатели и определяют общие потери силы тока в системе.

Расчёты

Ведя расчёты энергопотребления, следует перевести одну единицу измерения в другую, с целью определения ожидаемых потерь и выяснения окончательных мощностных характеристик.

В случае с дизельными электростанциями, путём расчётов можно определить мощность в кВт, зная величины в кВа. Вы можете перевести одни значения в другие (тем более, что известен поправочный коэффициент - 0,8).

Пример

На примере дизельной электростанции, мощность которой в кВа составляет 86 единиц, перевести эти значения в кВт можно следующим образом: 86х0,8=68,8. В данном случае 68,8 и есть показатель в кВт.

Вы сможете перевести генерируемые кВа в потребляемые кВт, используя простую формулу. Она поможет вам выбрать источник энергии, показатели, которого будут достаточны для устройств потребляющих энергию.

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 мегаватт [МВт] = 1000 киловольт-ампер [кВ·А]

Исходная величина

Преобразованная величина

ватт эксаватт петаватт тераватт гигаватт мегаватт киловатт гектоватт декаватт дециватт сантиватт милливатт микроватт нановатт пиковатт фемтоватт аттоватт лошадиная сила лошадиная сила метрическая лошадиная сила котловая лошадиная сила электрическая лошадиная сила насосная лошадиная сила лошадиная сила (немецкая) брит. термическая единица (межд.) в час брит. термическая единица (межд.) в минуту брит. термическая единица (межд.) в секунду брит. термическая единица (термохим.) в час брит. термическая единица (термохим.) в минуту брит. термическая единица (термохим.) в секунду МBTU (международная) в час Тысяча BTU в час МMBTU (международная) в час Миллион BTU в час тонна охлаждения килокалория (межд.) в час килокалория (межд.) в минуту килокалория (межд.) в секунду килокалория (терм.) в час килокалория (терм.) в минуту килокалория (терм.) в секунду калория (межд.) в час калория (межд.) в минуту калория (межд.) в секунду калория (терм.) в час калория (терм.) в минуту калория (терм.) в секунду фут фунт-сила в час фут·фунт-сила/минуту фут·фунт-сила/секунду фунт-фут в час фунт-фут в минуту фунт-фут в секунду эрг в секунду киловольт-ампер вольт-ампер ньютон-метр в секунду джоуль в секунду эксаджоуль в секунду петаджоуль в секунду тераджоуль в секунду гигаджоуль в секунду мегаджоуль в секунду килоджоуль в секунду гектоджоуль в секунду декаджоуль в секунду дециджоуль в секунду сантиджоуль в секунду миллиджоуль в секунду микроджоуль в секунду наноджоуль в секунду пикоджоуль в секунду фемтоджоуль в секунду аттоджоуль в секунду джоуль в час джоуль в минуту килоджоуль в час килоджоуль в минуту планковская мощность

Общие сведения

В физике мощность - это отношение работы ко времени, в течении которого она выполняется. Механическая работа - это количественная характеристика действия силы F на тело, в результате которого оно перемещается на расстояние s . Мощность можно также определить как скорость передачи энергии. Другими словами, мощность - показатель работоспособности машины. Измерив мощность, можно понять в каком количестве и с какой скоростью выполняется работа.

Единицы мощности

Мощность измеряют в джоулях в секунду, или ваттах. Наряду с ваттами используются также лошадиные силы. До изобретения паровой машины мощность двигателей не измеряли, и, соответственно, не было общепринятых единиц мощности. Когда паровую машину начали использовать в шахтах, инженер и изобретатель Джеймс Уатт занялся ее усовершенствованием. Для того чтобы доказать, что его усовершенствования сделали паровую машину более производительной, он сравнил ее мощность с работоспособностью лошадей, так как лошади использовались людьми на протяжении долгих лет, и многие легко могли представить, сколько работы может выполнить лошадь за определенное количество времени. К тому же, не во всех шахтах применялись паровые машины. На тех, где их использовали, Уатт сравнивал мощность старой и новой моделей паровой машины с мощностью одной лошади, то есть, с одной лошадиной силой. Уатт определил эту величину экспериментально, наблюдая за работой тягловых лошадей на мельнице. Согласно его измерениям одна лошадиная сила - 746 ватт. Сейчас считается, что эта цифра преувеличена, и лошадь не может долго работать в таком режиме, но единицу изменять не стали. Мощность можно использовать как показатель производительности, так как при увеличении мощности увеличивается количество выполненной работы за единицу времени. Многие поняли, что удобно иметь стандартизированную единицу мощности, поэтому лошадиная сила стала очень популярна. Ее начали использовать и при измерении мощности других устройств, особенно транспорта. Несмотря на то, что ватты используются почти также долго, как лошадиные силы, в автомобильной промышленности чаще применяются лошадиные силы, и многим покупателям понятнее, когда именно в этих единицах указана мощность автомобильного двигателя.

Мощность бытовых электроприборов

На бытовых электроприборах обычно указана мощность. Некоторые светильники ограничивают мощность лампочек, которые в них можно использовать, например не более 60 ватт. Это сделано потому, что лампы более высокой мощности выделяют много тепла и светильник с патроном могут быть повреждены. Да и сама лампа при высокой температуре в светильнике прослужит недолго. В основном это проблема с лампами накаливания. Светодиодные, люминесцентные и другие лампы обычно работают с меньшей мощностью при одинаковой яркости и, если они используются в светильниках, предназначенных для ламп накаливания, проблем с мощностью не возникает.

Чем больше мощность электроприбора, тем выше потребление энергии, и стоимости использования прибора. Поэтому производители постоянно улучшают электроприборы и лампы. Световой поток ламп, измеряемый в люменах, зависит от мощности, но также и от вида ламп. Чем больше световой поток лампы, тем ярче выглядит ее свет. Для людей важна именно высокая яркость, а не потребляемая ламой мощность, поэтому в последнее время альтернативы лампам накаливания пользуются все большей популярностью. Ниже приведены примеры видов ламп, их мощности и создаваемый ими световой поток.

  • 450 люменов:
    • Лампа накаливания: 40 ватт
    • Компактная люминесцентная лампа: 9–13 ватт
    • Светодиодная лампа: 4–9 ватт
  • 800 люменов:
    • Лампа накаливания: 60 ватт
    • Компактная люминесцентная лампа: 13–15 ватт
    • Светодиодная лампа: 10–15 ватт
  • 1600 люменов:
    • Лампа накаливания: 100 ватт
    • Компактная люминесцентная лампа: 23–30 ватт
    • Светодиодная лампа: 16–20 ватт

    Из этих примеров очевидно, что при одном и том же создаваемом световом потоке светодиодные лампы потребляют меньше всего электроэнергии и более экономны, по сравнению с лампами накаливания. На момент написания этой статьи (2013 год) цена светодиодных ламп во много раз превышает цену ламп накаливания. Несмотря на это, в некоторых странах запретили или собираются запретить продажу ламп накаливания из-за их высокой мощности.

    Мощность бытовых электроприборов может отличаться в зависимости от производителя, и не всегда одинакова во время работы прибора. Внизу приведены примерные мощности некоторых бытовых приборов.

    • Бытовые кондиционеры для охлаждения жилого дома, сплит-система: 20–40 киловатт
    • Моноблочные оконные кондиционеры: 1–2 киловатта
    • Духовые шкафы: 2.1–3.6 киловатта
    • Стиральные машины и сушки: 2–3.5 киловатта
    • Посудомоечные машины:1.8–2.3 киловатта
    • Электрические чайники: 1–2 киловатта
    • Микроволновые печи:0.65–1.2 киловатта
    • Холодильники: 0.25–1 киловатт
    • Тостеры: 0.7–0.9 киловатта

    Мощность в спорте

    Оценивать работу с помощью мощности можно не только для машин, но и для людей и животных. Например, мощность, с которой баскетболистка бросает мяч, вычисляется с помощью измерения силы, которую она прикладывает к мячу, расстояния которое пролетел мяч, и времени, в течение которого эта сила была применена. Существуют сайты, позволяющие вычислить работу и мощность во время физических упражнений. Пользователь выбирает вид упражнений, вводит рост, вес, длительность упражнений, после чего программа рассчитывает мощность. Например, согласно одному из таких калькуляторов, мощность человека ростом 170 сантиметров и весом в 70 килограмм, который сделал 50 отжиманий за 10 минут, равна 39.5 ватта. Спортсмены иногда используют устройства для определения мощности, с которой работают мышцы во время физической нагрузки. Такая информация помогает определить, насколько эффективна выбранная ими программа упражнений.

    Динамометры

    Для измерения мощности используют специальные устройства - динамометры. Ими также можно измерять вращающий момент и силу. Динамометры используют в разных отраслях промышленности, от техники до медицины. К примеру, с их помощью можно определить мощность автомобильного двигателя. Для измерения мощности автомобилей используется несколько основных видов динамометров. Для того, чтобы определить мощность двигателя с помощью одних динамометров, необходимо извлечь двигатель из машины и присоединить его к динамометру. В других динамометрах усилие для измерения передается непосредственно с колеса автомобиля. В этом случае двигатель автомобиля через трансмиссию приводит в движение колеса, которые, в свою очередь, вращают валики динамометра, измеряющего мощность двигателя при различных дорожных условиях.

    Динамометры также используют в спорте и в медицине. Самый распространенный вид динамометров для этих целей - изокинетический. Обычно это спортивный тренажер с датчиками, подключенный к компьютеру. Эти датчики измеряют силу и мощность всего тела или отдельных групп мышц. Динамометр можно запрограммировать выдавать сигналы и предупреждения если мощность превысила определенное значение. Это особенно важно людям с травмами во время реабилитационного периода, когда необходимо не перегружать организм.

    Согласно некоторым положениям теории спорта, наибольшее спортивное развитие происходит при определенной нагрузке, индивидуальной для каждого спортсмена. Если нагрузка недостаточно тяжелая, спортсмен привыкает к ней и не развивает свои способности. Если, наоборот, она слишком тяжелая, то результаты ухудшаются из-за перегрузки организма. Физическая нагрузка во время некоторых упражнений, таких как велосипедный спорт или плавание, зависит от многих факторов окружающей среды, таких как состояние дороги или ветер. Такую нагрузку трудно измерить, однако можно выяснить с какой мощностью организм противодействует этой нагрузке, после чего изменять схему упражнений, в зависимости от желаемой нагрузки.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

1 кВт равен 1,3596 л.с. при вычислении мощности двигателя.
1 л.с. равна 0,7355 кВт при вычислении мощности двигателя.

История

Лошадиная сила (л.с.) это внесистемная единица мощности, которая появилась примерно в 1789 году с приходом паровых машин. Изобретатель Джеймс Уатт ввел термин «лошадиная сила» чтобы наглядно показать насколько его машины экономически выгоднее живой тягловой силы. Уатт пришел к выводу, что в среднем за минуту одна лошадь поднимает груз в 180 фунтов на 181 фут. Округлив расчеты в фунто-футах за минуту, он решил, что лошадиная сила будет равна 33 000 этих самых фунто-футов в минуту. Конечно расчеты брались для большого промежутка времени, потому что кратковременно лошадь может "развивать" мощность около 1000 кгс·м/с, что примерно равно 13 лошадиным силам. Такую мощность называют - котловая лошадиная сила.

В мире существует несколько единиц измерения под названием "лошадиная сила". В европейских странах, России и СНГ, как правило, под лошадиной силой имеется в виду так называемая «метрическая лошадиная сила», равная примерно 735 ватт (75 кгс·м/с).

В автомобильной отрасли Великобритании и США наиболее часто л.с. приравнивают к 746 Вт, что равно 1,014 метрической лошадиной силы. Также в промышленности и энергетике США используются электрическая лошадиная сила (746 Вт) и котловая лошадиная сила (9809,5 Вт).

При покупке дизельной электростанции первое, с чем сталкивается потребитель, – это выбор мощности ДГУ. В характеристиках производители всегда указывают две единицы измерения мощности.

кВА – полная мощность оборудования;

кВт – активная мощность оборудования;

Выбирая генератор или стабилизатор напряжения необходимо отличать полную потребляемую мощность (кВА) от активной мощности (кВт), которая затрачивается на совершение полезной работы.

Мощность - физическая величина, равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

Мощность бывает полная, реактивная и активная:

  • S – полная мощность измеряется в кВА (килоВольтАмперах)

Характеризует полную электрическую мощность переменного тока. Для получения полной мощности значения реактивной и активной мощностей суммируются. При этом соотношение полной и активной мощностей у разных потребителей электроэнергии может отличаться. Таким образом, для определения совокупной мощности потребителей следует суммировать их полные, а не активные мощности.

кВА характеризует полную электрическую мощность, имеющую принятое буквенное обозначение по системе СИ – S: это геометрическая сумма активной и реактивной мощности, находимая из соотношения: S=P/cos(ф) или S=Q/sin(ф).

  • Q – реактивная мощность измеряется в кВар (килоВарах)

Реактивная мощность, потребляемая в электрических сетях, вызывает дополнительные активные потери (на покрытие которых расходуется энергия на электростанциях) и потери напряжения (ухудшающие условия регулирования напряжения).

  • Р – активная мощность измеряется в кВт (килоВаттах)

Это физическая и техническая величина, характеризующая полезную электрическую мощность. При произвольной нагрузке в цепи переменного тока действует активная составляющая тока. Эта часть полной мощности, которая определяется коэффициентом мощности и является полезной (используемой).

Единый коэффициент мощности обозначается Сos φ.

Это коэффициент мощности, который показывает соотношение (потерь) кВт к кВА при подключении индуктивных нагрузок.

Распространенные коэффициенты мощности и их расшифровка(cos φ):

1 – наилучшее значение

0,95 – отличный показатель

0,90 – удовлетворительные значение

0,80 – средний наиболее распространенный показатель

0,70 – плохой показатель

0,60 – очень низкое значение

кВт характеризует активную потребляемую электрическую мощность, имеющую принятое буквенное обозначение P: это геометрическая разность полной и реактивной мощности, находимая из соотношения: P=S*cos(ф).

Говоря языком потребителя: кВт – нетто (полезная мощность), а кВа брутто (полная мощность).

1 кВт = 1.25 кВА

1 кВА = 0.8 кВт

Как перевести мощность кВА в кВт?

Чтобы быстро перевести кВА в кВт нужно из кВА вычесть 20% и получится кВт с небольшой погрешностью, которой можно пренебречь. Или воспользоваться формулой для перевода кВА в кВт:

P=S * Сos f

Где P-активная мощность (кВт), S-полная мощность (кВА), Сos f- коэффициент мощности.

К примеру, чтобы мощность 400кВА перевести в кВт, необходимо 400кВА*0,8=320кВт или 400кВа-20%=320кВт .

Как перевести мощность кВт в кВА?

Для перевода кВт в кВА применима формула:

Где S-полная мощность (кВА), P-активная мощность (кВт), Сos f- коэффициент мощности.

Например, чтобы мощность 1000 кВт перевести в кВА, следует 1000 кВт / 0,8= 1250кВА.

Вопрос:
В чем отличие кВт от кВа

Ответ:

Многие пишут достаточно сложно. Для простоты восприятия скажу что основным отличием является то, что кВт как единица измерения принята в основном для электродвигателей и подобных индуктивных нагрузок.

Вольт-ампер (ВА)

  • Это единица полной мощности переменного тока, обозначается ВА или VA . Полная мощность переменного тока определяется как произведение действующих значений тока в цепи (в амперах) и напряжения на её зажимах (в вольтах).

Ватт (Вт)

  • Единица мощности . Названа в честь Дж. Уатта, обозначается Вт или W . Ватт -это мощность, при которой за 1 сек совершается работа, равная 1 джоулю. Ватт как единица электрической (активной) мощности равен мощности не изменяющегося электрического тока силой 1 ампер при напряжении 1 вольт.

Если вы выбираете или либо электродвигатель то следует помнить , что кВА - это полная потребляемая мощность, а кВт - это активная (индуктивная) мощность. Полная мощность – это сумма реактивной и активной мощности. Зачастую разные потребители имеют разное соотношение полной и активной мощности.

Поэтому для определения суммарной мощности всех потребителей необходимо сложение полных мощностей оборудования, а не активных мощностей. В бытовых условиях полную и активную мощность считают равными. При выборе стабилизатора напряжения вам поможет статья

При выборе нужно ещё учитывать и мощность самого прибора во время зарядки АКБ, мощность нагрузки +мощность ИБП при заряде АКБ. Чем выше зарядный ток , тем большее количество батарей можно зарядить, т.е. тем большее время автономии можно обеспечить. Одними из лучших ИБП с большим временем автономии на внешних АКБ это

Мощность (электрическая мощность)

  • Физическая и техническая величина в цепях электрического тока. В цепях переменного тока произведение эффективных значений напряжения U и тока I определяет полную мощность , при учете фазового сдвига между током и напряжением – активную и реактивную составляющие мощности, а также коэффициент мощности.
  • Сумма мощностей единиц оборудования.

Номинальная мощность

  • Значение мощности для длительного режима работы , на которое рассчитан источник или потребитель электроэнергии.

Полная мощность (“S”)

  • Кажущаяся мощность , величина, равная произведению действующих значений периодического электрического тока в цепи “I” и напряжения “U” на её зажимах: S=U*I ; для синусоидального тока (в комплексной форме) равна,где Р - активная мощность, Q - реактивная мощность (при индуктивной нагрузке Q > 0, а при ёмкостной Q ).

Мощность полная

  • Вычисляемое значение (или результат измерений), необходимое для определения, например, параметров электрических генераторов. Значение полной мощности в цепи переменного тока есть произведение эффективных значений тока и напряжения.
  • В принципе, работа электрического оборудования основана на преобразовании электрической энергии в другие формы энергии. Электрическая мощность, поглощаемая оборудованием , называется Полной мощностью и состоит из активной и реактивной мощностей: S = √3*U*√I

Активная мощность (“P”)

  • Среднее за период значение мгновенной мощности переменного тока; характеризует среднюю скорость преобразования электромагнитной энергии в другие формы (тепловую, механическую, световую и т. д.).
Измеряется в Вт (W, - ваттах). Для синусоидального тока (в электрической сети 1-фазного переменного тока) равна произведению действующих (эффективных) значений тока “I” и напряжения “U” на косинус угла сдвига фаз между ними: P = I*U*Cos ф . Для 3-фазного тока: (P=√3 U I Сos φ . (Источник: "Российский Энциклопедический словарь" ).

Скажем проще , это та часть входной мощности, которая превращается в выходную мощность. Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи “r” или её проводимость “g” по формуле: P = («I» в квадрате)*r = («V» в квадрате)*g. (P = I2r =V2g).

В любой электрической цепи как синусоидального, так и несинусоидального тока, Активная мощность всей цепи равна сумме Активных мощностей отдельных частей цепи. С полной мощностью («S») Активная мощность связана соотношением: P = S*Сos ф.

Вся входная мощность, к примеру, полная мощность, должна быть превращена в полезную выходную мощность, указывающуюся как активная мощность, например, реальная выходная мощность мотора. Качество такого превращения мощности обозначается Сos φ, - единый коэффициент мощности.

Мощность активная - физическая и техническая величина, характеризующая полезную электрическую мощность. Мощность активная является активно действующей мощностью , т.е. мощностью, вызывающей воздействие на электрооборудование, например , нагрев, механические усилия. При произвольной нагрузке в цепи переменного тока действует активная составляющая тока, иначе говоря, часть полной мощности, определяемая коэффициентом мощности, является полезной (используемой).

Реактивная мощность («Q»)

  • Величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи переменного тока. Реактивная мощность «Q» для синусоидального тока равна произведению действующих значений напряжения “U” и тока “I”, умноженному на синус угла сдвига фаз между ними: Q = U*I*Sin ф .Измеряется в варах . Для 3-фазного тока: Q=√3*U*I*Sin φ. (

Присоединенная нагрузка для стройки и для дома. Какой выбрать?

Без постоянного доступа к электричеству трудно представить реализацию большинства инвестиций в строительство. Тем более, когда речь идет о строительстве частного дома, многоквартирного дома или промышленного объекта. Затем одной из первоочередных задач является установление максимальной мощности подключения для строительной площадки, которая будет строго соответствовать суммарной мощности электрооборудования, используемого на время инвестиции.Другим вопросом позже станет законтрактованная мощность, на которую будет заключаться договор с конкретным энергораспределителем. Однако начнем с заглавной емкости подключения и проверим, что она собой представляет на самом деле.

Какая подключенная нагрузка?

Мощность присоединения – это планируемая активная мощность, отбираемая из электрической сети. Это может быть мощность, подаваемая в рассматриваемую сеть, например, при использовании фотогальванической установки. Подключаемая мощность выражается в киловаттах (кВт) и рассчитывается на основе максимального потребления электроэнергии всеми устройствами, подключенными к электросети.Мощность присоединения включается в договор технологического присоединения как наибольшее значение, определяемое в течение каждого часа расчетного периода из средних значений этой мощности в 15-минутных периодах.

Очень важно правильно подобрать параметры мощности подключения для конкретной инвестиции. Слишком низкая может вызвать значительные проблемы в будущем, если мы подключим к электрической цепи новые, потребляющие энергию устройства.

Как рассчитать подключенную нагрузку?

Обычно это простая задача.Достаточно сложить максимальную мощность всех подключенных к электросети устройств на строительной площадке или в готовом к эксплуатации объекте. Стоит внести в расчет небольшой запас на случай, если в будущем электрооборудование будет расширено за счет более энергоемкого оборудования.

Оценка пропускной способности подключения является очень важным вопросом как на этапе строительства, так и в дальнейшем использовании объекта. Эти расчеты должны быть включены в заявку на подключение, адресованную выбранному распределителю электроэнергии.Здесь стоит добавить, что плата за мощность подключения будет зависеть от оценок, указанных в заявке. Чем больше электроэнергии мы намерены потреблять, тем больше мы будем платить за подключение.

Что такое контрактная мощность?

Контрактная мощность есть не что иное, как активная мощность, потребляемая или отдаваемая в электрическую сеть, указанная в договоре на оказание услуг по передаче и распределению или в договоре купли-продажи энергии. Контрактная мощность заказывается на весь календарный год, но может быть разбита на отдельные месяцы.Однако, если контрактная мощность превышена в данный расчетный период, получатель должен учитывать дополнительную плату.

Какая подключаемая нагрузка для строительной площадки?

Прежде чем приступить к строительным работам на отведенной территории, стоит узнать о подключении электричества на строительной площадке. Следует помнить, однако, что чаще всего так наз. строительный тариф (C) несколько выше стандартных тарифов для населения (G). Это связано с тем, что спрос на электроэнергию при инвестиционном строительстве очень часто намного выше, чем при использовании уже готового объекта.Тем не менее, распределители электроэнергии обычно предлагают несколько различных строительных тарифов, благодаря которым мы будем платить немного меньше за использование самых энергоемких машин в обозначенные промежутки времени.

Итак, какой должна быть подключенная нагрузка для снабжения строительной площадки? Все зависит от технологии строительства. Чаще всего достаточно мощности от 6 до 8 кВт, но стоит выбрать трехфазный источник питания, благодаря которому мы можем легко подключиться к сети, например.большая бетономешалка. Естественно, если на строительной площадке несколько разных рабочих мест, что выливается в повышенный спрос на электроэнергию, то и подключаемая мощность должна быть соответственно выше.

Какова мощность подключения для дома на одну семью?

Безопасная мощность подключения для среднего дома на одну семью должна составлять от 15 до 30 кВт. Это особенно актуально для домохозяйств, где часто используются электрообогрев дома, беспроводные чайники или индукционные плиты.В случае энергосберегающих объектов, где потребление электроэнергии намного ниже, мы можем снизиться до значения около 10 кВт. Однако стоит подчеркнуть, что хорошей практикой будет завышать значение мощности подключения, чтобы после подключения к электроустановке новых энергоемких устройств не возникало проблем с их питанием.

На стройке нет электричества - как исправить?

Однако по многим причинам может случиться так, что доступ к электрической сети будет временно недоступен.Что делать в таком случае, если нам еще предстоит приступить к строительству инвестиции? Идеальным и на самом деле не очень дорогим решением будет вложение в электрогенераторов . Что немаловажно, данный вид техники можно с успехом арендовать в пунктах проката спецтехники.

Если же мы ежедневно имеем дело с выполнением строительных работ, то покупка хорошего генератора для компании, несомненно, будет весьма желанным решением - ведь мы всегда готовы к любым перепадам электроэнергии, которые делает компанию очень конкурентоспособной.

Мощные и эффективные электрогенераторы могут легко питать практически любое оборудование, используемое на строительной площадке, например, бетономешалки , резчики , сетевые электроинструменты , штукатурные агрегаты и воздушные компрессоры . В предложении нашего магазина вы найдете как однофазные, так и трехфазные агрегаты. У нас также есть различные версии двигателей - бензиновые и дизельные.

.

Присоединительная мощность и договорная мощность - выбор, таблица, увеличение распределения

15.01.2021

Сокращение расходов — это то, что всегда звучит заманчиво, и в этом будет заинтересован каждый. Это ничем не отличается, когда речь идет об экономии на счетах за электроэнергию. Помимо использования множества доступных устройств с высоким классом энергоэффективности, стоит рассмотреть вопрос соответствующего подбора договорной мощности.Иногда ее путают с мощностью соединения, которая представляет собой максимально допустимую мощность, которую можно использовать при данном соединении. С другой стороны, контрактная мощность — это максимальная мощность, которую может использовать получатель. Можно изменить значение договорной мощности, но оно не может быть больше, чем мощность подключения.

На практике стоит обратить внимание на две позиции в счете за электроэнергию: потребленная мощность и мощность по договору.

В ситуации, когда потребляемая мощность регулярно превышает значение договорной мощности, стоит обратиться к оператору распределительной сети с просьбой увеличить договорную мощность во избежание ненужной уплаты штрафных санкций за ее превышение.Ситуация обратная: если потребляемая мощность регулярно значительно ниже договорной мощности, стоит задуматься об уменьшении договорной мощности, чтобы не платить за избыточную мощность, которая не будет использована. Конечно, действовать следует с умом и определенный уровень превышения мощности допустим. Стоит потратить некоторое время и тщательно проанализировать свой уровень спроса, принимая во внимание, например, планируемые инвестиции и их влияние на потребление электроэнергии.

После определения нового уровня договорной мощности и принятия решения об его изменении необходимо установить порядок действий соответствующего оператора распределительной сети.

Каждый из основных операторов (Enea, Energa, Innogy, PGE, Tauron) допускает изменение договорной мощности один раз в 12 месяцев. Увеличение договорной мощности происходит без доплаты, если это не требует адаптации системы учета и выставления счетов (это в том случае, когда старая договорная мощность меньше или равна 40 кВт, а новая мощность выше 40 кВт). ), но ситуация с уменьшением мощности контракта выглядит несколько иначе.

В этом случае каждый из операторов устанавливает дату (Enea и Tauron - 30 сентября, Energa и PGE - 31 октября), к которой следует сообщить новое, уменьшенное значение договорной мощности.В случае несоблюдения этого условия и последующего сообщения об изменении к фиксированной части сетевого тарифа в расчете за оказание распределительных услуг за весь период, охватываемый корректировкой, добавляется 10 % к фиксированной части сетевого тарифа. Поэтому стоит не опаздывать, потому что такие штрафные проценты могут фактически свести на нет экономию, полученную в результате перехода на более прибыльный, более низкий уровень законтрактованной мощности. И смысл в том, чтобы сократить расходы, а не добавлять новые.

Правильный выбор законтрактованной мощности часто позволяет добиться действительно значительной экономии.Об этом стоит позаботиться, тем более, что это не очень сложно и требует лишь немного времени для анализа имеющихся у вас счетов, а сэкономленные таким образом деньги можно использовать для других, практических целей.

Автор: Адам Мрозовски

.

Как рассчитать потребление электроэнергии устройством?

Узнайте о мощности устройства, затем подставьте данные в формулу. Вы можете легко и быстро рассчитать затраты на электроэнергию, но они не будут совпадать со счетом.

Часто задумываешься, сколько электроэнергии потребляют отдельные приборы, что энергоемче холодильник или плита, а может и микроволновка, лишь бы ей чаще пользовались. Такие знания можно использовать, например, для ограничения использования наиболее прибыльных покупателей.Также легко узнать, сколько денег убегает из кошелька, когда мы оставляем включенным свет, телевизор, ноутбук или ставим воду для кофе. Мы никогда не установим фактическое потребление, поэтому такие расчеты носят ориентировочный характер.

Подставив мощность прибора в формулу , мы подставим максимальную мощность, а при ней прибор работает только на определенных этапах своей работы. Стиральная машина, когда она нагревает воду, холодильник, когда она замерзает, или посудомоечная машина, когда она ополаскивает посуду. Второе - это рассчитать само потребление, это можно умножить на цену электроэнергии, но тогда мы не будем считать затраты на распределение , а они взимаются как за потребление, так и ежемесячно.

Формула расчета потребления электроэнергии

Узнайте мощность устройства, она написана на паспортной табличке, или в техническом паспорте, или в руководстве пользователя. Это значение, выраженное в ваттах, обозначение — заглавная буква «Вт». Затем это значение следует перевести в киловатты, меньшую единицу, потребление энергии в киловатт-часах видно в счете за электроэнергию. Киловатт эквивалентен тысяче ватт.

Формула потребления: Количество киловатт, потребляемых прибором, необходимо умножить на время включения прибора.

Конечно, не забывайте выбирать единицы измерения, умножая не на минуты, а на часы. Полученный результат можно умножить на текущую цену за киловатт-час электроэнергии, чтобы получить стоимость устройства.

Примеры расчета потребления тока приборами

Используем приведенную выше формулу на практике, посчитаем, сколько энергии потребляет двухтысячеватный радиатор за один час. Сначала нужно перевести эту величину в киловатты, 2000 Вт равны 2 киловаттам.

2кВт х 1ч = 2кВтч

Другим примером может быть расчет ежемесячного энергопотребления и стоимости электроэнергии, потребляемой телевизором мощностью 500 Вт, который включается ежедневно на 3 часа. Давайте установим очень низкую цену на электроэнергию в 0,4 злотых. Подсчитайте, сколько часов в месяц работает телевизор (это будет 90 часов за 30 дней). Затем нужно перевести мощность прибора в киловатты. 500 ватт равны 0,5 киловатта. Подставив эти данные в формулу и умножив 90 часов работы на 0,5 киловатт израсходованной за один час энергии , получим результат 45 киловатт-часов.Наконец, вам нужно умножить этот результат на цену одного киловатт-часа, то есть 0,4 злотых, и вы увидите, что за просмотр телевизора каждый день в течение трех часов через месяц вам придется заплатить 18 злотых.

.

Потребление электроэнергии - средние значения по дому и квартире. Как рассчитать?

Мощность устройства, время его работы и тарифы, применяемые поставщиком электроэнергии — эти значения необходимы для оценки того, сколько стоит электроэнергия для данного оборудования. На основе этой информации можно спрогнозировать величину счетов за электроэнергию в квартире или доме.

Каждое электрическое устройство имеет определенную мощность. Это значение, выраженное в ваттах (Вт), которое показывает, какой объем работы оборудование выполняет в единицу времени и сколько электроэнергии ему необходимо потреблять.Мощность часто выражается в кВт (киловаттах) - 1 кВт равен 1000 Вт.

Производители обязаны информировать клиентов о мощности данного устройства. Помимо конкретного номинала на снаряжении всегда можно найти наклейку с так называемым класс энергопотребления . Он показывает, сколько энергии потребляет устройство. Приборы, которые лучше всего экономят электроэнергию, отмечены знаком A +++. Затем шкала идет вниз до А++, А+, а затем по буквам, вверх, до Г (наиболее энергоемкие устройства).

Как рассчитать стоимость потребления электроэнергии?

Зная мощность устройства, вы можете сами подсчитать, сколько стоит его использование в любой период времени. Просто используйте формулу:

для этого

стоимость (зл.) = мощность (кВт) x количество рабочих часов x тариф поставщик за 1 киловатт-час (кВт-ч), выраженный в

злотых

Предположим, что пылесос (класс энергопотребления А) имеет потребляемую мощность 620 Вт, т.е. 0,62 кВт (620 Вт/1000).Аппарат работает 3 раза в неделю по 0,5 часа. Ежемесячно это составляет 6 часов (3 * 0,5 часа * 4 недели). Распределитель энергии принимает тариф 0,3675 злотых за 1 кВтч.

Исходя из этого, пользователь может рассчитать ежемесячную стоимость уборки квартиры: 0,62 кВт * 6 часов * 0,3675 злотых = 1,36 злотых. Это более 16 злотых в год.

Пользоваться, например, холодильником дороже. Для удобства использования на этикетке холодильника указана информация о среднем годовом потреблении энергии, уже выраженная в кВтч.Для прибора класса энергопотребления А++ это может быть 252 кВтч. Достаточно умножить это число на тариф за 1 кВтч: 252 кВтч * 0,3675 злотых = 92 злотых. Это означает, что использование этого устройства стоит в среднем 90 злотых в год.

Сколько электроэнергии потребляют домохозяйства?

В приведенных выше расчетах использовался тариф G11 - самый популярный тариф на квартиры и дома. Он позволяет максимально просто и разборчиво расплачиваться, ведь сумма за 1 кВтч одинакова вне зависимости от времени суток.Клиенты дистрибьюторов электроэнергии также могут воспользоваться тарифом G12, который позволяет использовать более дешевую электроэнергию в вечернее и ночное время.

Величина потребления электроэнергии в доме или квартире зависит от ряда факторов. Это включает в себя количество жителей, их привычки (следят ли они, например, за тем, чтобы свет выключался, когда он не нужен), качество и энергопотребление бытовой техники и электроники или даже способ обогрева помещений и воды. Чем качественнее оборудование и чем сильнее у жителей привычка экономить электроэнергию, тем меньше счета.Поэтому хорошим способом сократить ежемесячные расходы является, например, использование энергосберегающих светодиодных ламп, широкий выбор которых можно найти в предложении EL12.pl.

В 2019 году Центральное статистическое управление подсчитало, сколько электроэнергии в среднем потребляют домохозяйства. По оценкам Центрального статистического управления Польши (GUS), наибольшее количество (около 20%) приходится на домохозяйства с потреблением 1,5 тыс. человек. до 2000 кВтч в год. прибл. 15 процентов домохозяйств находится в диапазоне потребления от 1 тыс.до 1,5 тыс. кВтч в год. Медиана годовых расходов на электроэнергию для домашнего хозяйства в Польше составила 1,2 тысячи. злотых.

По расчетам Центрального статистического управления, среднее потребление электроэнергии на 1 м2 полезной площади в городской квартире составило 29 кВтч, в год , а в сельской местности 26,55 кВтч .

Важно отметить, что поляки в основном пользуются энергосберегающими приборами. По данным Центрального статистического управления, почти 80 процентов. бытовые холодильники относятся к классу энергопотребления А.В случае с посудомоечными машинами этот процент достиг почти 90%.

.Конвертер

киловатт в лошадиные силы - сколько киловатт в лошадиные силы? - Пункта.пл

Как в Польше, так и во всей Европе общепринятой единицей мощности двигателя внутреннего сгорания является лошадиная сила (км). Однако производители транспортных средств все чаще указывают мощность своих двигателей в киловаттах (кВт). Так, например, чтобы сравнить мощность двух двигателей, нужно использовать конвертер или специальный калькулятор, который переводит киловатты в лошадиные силы и наоборот.Итак, 1 кВт - это сколько лошадиных сил (км)?

Мощность двигателя - киловатты и лошадиные силы, в чем разница?

При указании мощности двигателя стандартно используется единица лошадиных сил (л.с.). Однако стандартизированной единицей мощности для каждой машины, в том числе транспортных средств, а точнее двигателей, которыми они оснащены, является ватт (Вт). В случае двигателей внутреннего сгорания мощность настолько велика, что мы приводим ее в ваттах, возведенных в третью степень, т. е. в киловаттах (кВт).Почему эти две единицы до сих пор стоят рядом или взаимозаменяемы при определении мощности двигателя наших автомобилей?

Итак, лошадиные силы были заменены киловаттами с введением системы СИ. Однако, прочно закрепившись в общей номенклатуре, полностью они не выведены. Поэтому лошадиная сила – это единица, постоянно присутствующая при определении мощности двигателей внутреннего сгорания и механических двигателей. Мощность двигателя, указанная в киловаттах, указана в документации, подтверждающей допуск, в карточках транспортных средств и регистрационных документах.

Преобразователь

кВт в л.с.

В Интернете можно легко найти калькулятор, позволяющий перевести кВт в л.с. Преобразование единиц позволит нам определить и сравнить мощность двигателя в нашем автомобиле. Для вашего удобства мы предоставляем стандартные, уже пересчитанные значения для двигателей внутреннего сгорания и электрических двигателей.

кВт км
50 68
51 69,36
52 70,72
53 72.08
54 73,44
55 74,8
60 81,6
61 82,96
63 85,68
65 88,4
70 95,2
72 97,92
75 105
78 106.08
80 108,8
82 111,52
85 115,6
86 116,96
90 122,4
95 129,2
97 131,92
99 134,64
100 136
120 163,2
125 170
180 244,8
190 258,4
195 265,2
200 272
210 285,6
220 299,2
275 374
300 408
305 414,8
310 421,6
350 476
400 544

Проверьте премию OC / AC для вашего автомобиля

1кВт - это сколько л.с.?

Мы сами можем преобразовать киловатт в лошадиные силы.Просто помните, что 1 л.с. равен 0,74 кВт, а 1 кВт равен 1,36 л.с. Безусловно, онлайн-конвертер кВт в лошадиные силы будет проще и быстрее в использовании. Калькулятор также будет полезен, если вы хотите перевести мощность двигателя из л.с. или кВт в л.с., т.е. Brake Horse Power - единица, встречающаяся среди англоязычных данных. Вот, например, мощность двигателя можно определить так:

мощность двигателя
КМ 102
кВт 75.020
БХП 100.606

или другие значения:

мощность двигателя
КМ 180
кВт 132,388
БХП 177,539

Силовые агрегаты прочие

Полезно знать, что блоки питания немного различаются в зависимости от страны.

  • PS от немецкого Pferdestärke - это ровно 1,0139 км
  • BHP от английского Break Horse Power или HP - это ровно 1,0139 км

.

Сколько электроэнергии потребляют устройства в месяц и сколько это стоит?

Электрические приборы являются неприятными акционерами в наших счетах за электроэнергию. Хотя они не будут платить за себя, они могут делать довольно полезные вещи с помощью энергии. Как прикинуть, сколько стоит играть в игры и почему заряжать телефон дешевле, чем есть китайские супы?

Любому прибору, вилка которого подходит к настенной розетке, для работы требуется электричество.Поэтому определенным решением проблемы потребления электроэнергии будет избавление от всех устройств из дома, у которых есть эта вилка. К сожалению, этот революционный подход не окупится: благодаря электричеству компьютер считает, стиральная машина стирает и радиатор нагревается. Все эти мероприятия дешевы и удобны даже с учетом высоких цен на электроэнергию.

Возможный скептик может попытаться заменить стиральную машину человеком-работником. Даже если он или она выполнит задание с такой же точностью, это займет у него больше времени и потребует минимум 17-19 злотых в час.Не говоря уже о налогах, страховках и прочей ерунде. Между тем за такую ​​стиральную машину даже не надо платить ZUS. Поэтому, прежде чем мы избавимся от любого преступника из дома, который кажется слишком жадным до доступа к нашей электроустановке, стоит подумать о предмете. Для этого будет полезно узнать, сколько и как он потребляет энергии. Только тогда мы сможем оценить, возможно ли и необходимо ли какое-либо ограничение.

Все, что вам нужно знать о ценах на электроэнергию:

Сколько стоит электроэнергия? Цена электроэнергии

Электричество стоит слишком дорого, и это единственная общая черта сборов, которые мы за него платим.Это потому, что услуга снабжения нас электричеством несложна только в идеальном мире, где не так много любителей за наши кровные деньги.

Производителем энергии является электростанция, и естественно, что он производит ее за вознаграждение. Однако простого производства электроэнергии недостаточно, чтобы мы могли извлечь из нее выгоду. Нам по-прежнему нужен доступ к энергосистеме, которая транспортирует энергию. Об этом заботятся операторы, которые также не являются благотворительными учреждениями.Даже в этой упрощенной схеме тарифы на электроэнергию, применимые к потребителям, зависят от трех переменных:

  • тарифа
  • поставщиков
  • мест

вы должны относиться к нему как к упрощенному среднему значению. В 2021 году наши сборы с учетом самого стабильного тарифа (G11) могут варьироваться от 0,60 до почти 0,80 злотых за 1 кВтч.

Нужно учитывать, что в реальном мире путь электросети между нашим домом и электростанцией более сложен. Даже если мы живем рядом с электростанцией, она может проходить через элементы инфраструктуры, принадлежащие нескольким операторам. Им приходится выступать посредниками между собой, чтобы нам не приходилось подписывать множество договоров и оплачивать несколько счетов, составляющих одну услугу. Таким образом, компания, которая выставляет нам счета и обязуется снабжать нас энергией, лишь частично физически может это сделать.Производство энергии и часть инфраструктуры должны быть куплены или сданы в аренду. В этой сложной ситуации компании, не имеющие отношения к энергетике, давно увидели свой шанс. Мы даже можем платить за электроэнергию интернет-провайдерам или администраторам многоквартирных домов, которые только бумажками тасуют.

Это создает иллюзию существования такого понятия, как выгодный договор на поставку электроэнергии. Действительно, мы можем сэкономить на посреднических расходах, но базовый тариф всегда устанавливается ближайшей электростанцией и оператором (или операторами), которому принадлежит доступная нам сеть электрификации.Мы изменим их, только изменив место жительства.

Однако это не означает, что экономный житель Трехградья должен собирать чемоданы и жить в Быдгоще, где тарифы на электроэнергию практически на 0,10 злотых за кВтч ниже. В ближайшие несколько лет в каждом уголке Польши будет дороже. Самой большой проблемой являются установленные законом сборы, которые устанавливаются одинаковыми для всех получателей. Сейчас они составляют почти 50% стоимости электроэнергии и будут только увеличиваться.Как потребители электроэнергии, мы добьемся каких-либо положительных эффектов только в том случае, если будем использовать ее как можно меньше. Как это сделать?

Как рассчитать, сколько электроэнергии потребляют электроприборы?

Прежде чем вносить какие-либо изменения, стоит определить, во сколько нам на самом деле обходится эксплуатация выбранного электроприбора. Для этого нам необходимо знать:

  • стоимость 1кВтч,
  • время, в течение которого данное оборудование находится под напряжением,
  • потребление электроэнергии устройством.

Формула расчета затрат на электроэнергию

Стоимость электроэнергии = энергия (кВтч) x рабочее время (ч) x цена 1 кВтч (PLN)

Сначала может показаться, что проблема только в единицах измерения и времени. Не все устройства работают круглосуточно и не очень регулярно, и не всегда час будет самой удобной единицей измерения.

Однако настоящим минным полем является количество энергии, которое поглощает электрическое устройство. Мы можем определить его тремя способами:

  • самостоятельное измерение
  • считывание среднего энергопотребления, заявленное производителем
  • расчет среднего энергопотребления исходя из мощности устройства.

К сожалению, ни один из этих методов не является универсальным, и их использование без учета каких-либо электрических устройств может ввести нас в заблуждение.

Как самостоятельно измерить потребление электроэнергии?

В случае с оборудованием, которое у нас уже есть дома, мы можем немного поиграть в электрика и использовать ваттметр. Это счетчик, который должен быть подключен к электрической розетке, которая используется кофемашиной, консолью или стиральной машиной. Таким образом, ваттметр даст нам знать, потребляет ли испытуемое устройство ток и в каком количестве.

Ваттметр

Чтобы определить, во сколько нам обходится использование контролируемого прибора, мы должны вспомнить, сколько длилось измерение, и умножить результат на интересующее нас время. Формула затрат электроэнергии за интересующий нас период будет выглядеть так:

Формула затрат электроэнергии по результату измерения ваттметром

Стоимость электроэнергии = энергия (кВтч) х кратное времени измерения х цена 1кВтч.

Хорошим примером ситуации, когда такое измерение совсем не просто, является холодильник. Ему нужен круглосуточный доступ к электропитанию, и 24-часового подключения ваттметра вполне достаточно. После полных суток получается, что мы получили результат 0,81 кВтч.

Месяц использования холодильника:

0,81 кВтч x 0,70 злотых x 30 дней = 17,01 зл. скорее всего, его следует рассматривать как заниженный.По данным производителя, эта модель холодильника потребляет 311 кВтч в год, а не 295,65 кВтч, как показывает ваттметр. Проблема не в самом измерении, а в том, что оно проводилось дома. В холодильнике было непривычно мало еды, а сам холодильник прошел тщательную чистку менее чем за 3 дня до теста. Это важно, потому что холодильники регулярно потребляют электричество, но их цель — бороться за поддержание температуры внутри. День, который мы выбрали для теста, вовсе не должен был быть репрезентативным.Результат может меняться в зависимости от:

  • холодильник полон,
  • температура окружающей среды,
  • изменения настроек уровня охлаждения, установленные пользователем,
  • количество льда,
  • время, в течение которого устройство остается открытым.

Чтобы получить надежный результат, наш ваттметр должен проверять холодильник в течение недели или целого месяца в каждом сезоне. Мы могли бы определить среднее количество продуктов, которые мы храним внутри, и привлечь всех пользователей.Такое обширное тестирование возможно, но не имеет смысла с точки зрения владельца устройства. В первую очередь потому, что кто-то уже делал подобную оценку нашей модели холодильника.

Маркировка энергоэффективности холодильника

Холодильник, как и все бытовые приборы, может быть допущен к продаже только в том случае, если производитель снабжает его маркировкой энергоэффективности. Для холодильников и морозильников на этикетке должна быть указана годовая потребность прибора в электроэнергии.Хотя это среднее значение, нам достаточно оценить затраты, которые мы понесем, снабдив наш холодильник нашей электроустановкой.

Как рассчитать потребление энергии устройством на основе его мощности?

Потребность в электроэнергии также можно рассчитать на основе мощности устройства. Это хорошая новость, ведь его значение можно легко найти в руководствах пользователя и на паспортных табличках электроники и бытовой техники. Хотя это дано в ваттах (Вт), но это единица, которую мы можем преобразовать в кВтч, за которую мы знаем, сколько мы платим.Для этого достаточно следующей формулы:

Формула перевода значения мощности (Вт) в значение энергии, за которую мы платим (кВтч)

Энергия (кВтч) = мощность (Вт) / 1000 × 1 ч

Значение мощности эквивалентно количеству энергии, которое потребляет электрическое устройство при работе в течение полного часа. Единственная арифметическая операция, которую нам нужно выполнить, — это мощность, выраженная в Вт на 1000. Таким образом, мы получаем значение кВтч, которое может поглотить заинтересовавшее нас электрическое устройство.

Формула стоимости электроэнергии, рассчитанная на основе мощности устройства:

Стоимость электроэнергии = потребность в энергии (мощность / 1000 × 1 час) x рабочее время x цена 1 кВтч

Важно только, чтобы мы подставляли значения в одинаковых единицах измерения для формулы. Помимо киловатт-часов энергии, нам нужно рабочее время, выраженное в часах. Это 60 минут или 3600 секунд. Мы также можем использовать кратные часам, но если у нас есть такая потребность в месячной шкале, маловероятно, что мы имеем дело с устройством с надежной мощностью.

Сколько стоит вскипятить воду в электрочайнике?

Используя мощность устройства, мы можем определить, насколько дорого обходится использование электрочайника. Оказывается, у каждого, кто предлагает чай гостям, есть жест.

Пример прожорливого электрочайника

На паспортной табличке используемого нами в качестве примера устройства указана мощность в диапазоне от 1850 Вт до 2 200 Вт. То есть мы предполагаем, что она достигает 2 200 Вт только в начале работы и после прогрева нагревателя потребляет 1 850 - 2 000 Вт.Процесс доведения воды до кипения занимает несколько минут, поэтому среднюю мощность, которую мы учитываем, можно оценить в 2000 Вт. . Он не демон скорости, и это не совсем его вина. Он нашел владельца, который редко интересуется очисткой от накипи. Мы готовим небольшие порции воды дважды, что занимает каждый раз 3 минуты 35 секунд .Около два раза в день, залить полностью, а время, необходимое для кипячения воды, увеличивается до 5 минут и 25 секунд.

Образцовый чайник, кипятящий воду в течение полного часа, израсходует около 2 кВтч. Он будет иметь доступ к электросети на 18 минут 24 часа в сутки. Один час равен 60 минутам. Итак, делим 18/60, что дает время работы 0,3 часа. Между тем, 1 кВтч стоит нам 0,70 злотых.

Суточная стоимость использования чайника рассчитывается по формуле:

Затраты на электроэнергию = потребность в энергии (мощность х 1 час) х время работы х цена 1 кВтч

Подставляем для него следующие значения:

Мощность: 2000 Вт, т.е. 2 кВт

Время работы: 0,3 ч

Цена: 0,70 зл. .

Кажется, что это немного, но через месяц устройство снимет с нас счет за электроэнергию на 12,60 злотых, а через год мы должны учесть стоимость 151,20 злотых только за кипячение воды. В течение 12 месяцев регулярного использования электрический чайник будет потреблять электроэнергию на сумму, сравнимую с ценой покупки (стоимостью 140–160 злотых).

Как сэкономить энергию с помощью электрического чайника?

Полную свободу в использовании электрочайника могут позволить себе только жители общежитий.Вероятно, по этой же причине меню на основе блюд быстрого приготовления не очень вредно только для людей в возрасте от 19 до 26 лет. Любой, кто оплачивает свои счета, должен учитывать, что электрический чайник — это прибор с большим аппетитом к электричеству. Запуская его несколько раз в день, вы почувствуете себя гораздо лучше в своем кармане, чем сон с включенной прикроватной лампой.

Единственным универсальным решением, способным снизить потребление электроэнергии чайником, является попытка купить герметичный прибор.Хотя в этой группе товаров сложно найти идеал, хорошей идеей будет модель, емкость для воды которой одновременно является термосом. Даже если этот функционал покажется не совсем надежным и нужным, чайник, оснащенный им, сделает свою работу быстрее и уменьшит выброс нашего электричества с дымом.

Как не обмануться мощностью электроприбора?

При использовании формулы потребления электроэнергии нельзя забывать о том, как потребляет электроэнергию расчетное устройство.Это зависит от того, откуда мы должны получить информацию о его потребности в электроэнергии. Подстановка на его место значения, вытекающего из мощности устройства, имеет смысл только в случае оборудования, функционирование которого так же просто, как: сделать и закончить.

Так работают тостеры, тостеры и электрочайники. У них есть обогреватели, которые превращают электричество в тепло и больше ничего не делают. Разумеется, свою максимальную мощность они тоже используют не постоянно, а циклами.Однако это очень короткие промежутки. Если такое устройство включить на несколько минут, его максимальная потребляемая мощность будет равна значению, которое переводится в затраты на его использование.

Стиральные машины, холодильники, компьютеры, игровые приставки и мониторы работают совершенно по-разному. Им нужна максимальная мощность редко, нерегулярно или никогда. Это означает только их потенциальные возможности и не будет нам полезно для оценки их фактической потребности в электроэнергии.

Сколько стоит стирка?

Хотя стиральная машина оснащена ТЭНами, преобразующими электричество в тепло, она не так проста, как электрический чайник. Выполняя отдельные задачи в рамках одного цикла стирки, он запускает множество компонентов с разной мощностью. Помимо нагревателя электричество должно быть подведено к его двигателю, электронике, электромагнитным клапанам и насосу слива воды. Тем не менее, все эти компоненты практически никогда не работают одновременно с максимальной мощностью, а такую ​​ситуацию обеспечивает мощность всей стиральной машины.Наш расчет стоимости его использования должен основываться на среднем потреблении энергии за один цикл стирки. Только тогда мы получим реальную стоимость, а не потенциальную.

Итак, мы можем подвергнуть стиральную машину ваттметру, но это будет сложно. Нам нужно знать вес тканей, которые мы стираем, и их впитывающую способность. Различные волокна имеют разное водопоглощение. Нам будет проще использовать информацию, которую производители предоставляют по этой теме. Хотя мы можем найти их на этикетке энергоэффективности, в случае со стиральными машинами мы должны обратиться к инструкции по эксплуатации.

Хорошим примером того, почему маркировка энергоэффективности не является авторитетной, является одна из самых популярных сегодня стиральных машин: SAMSUNG WW70T552DAT AddWash AI Control. Его модель с загрузкой до 7 кг стоит около 2 000 злотых и, согласно данным с энергетической этикетки, потребляет всего 0,52 кВтч (52 кВтч на 100 циклов) за один цикл стирки. Кроме того, он тихий и использует очень мало воды.

Маркировка энергоэффективности стиральной машины Samsung AddWash AI Control

Хотя параметры выбранной нами стиральной машины указывают на то, что мы могли бы пользоваться ею постоянно, мы живем только со взрослыми и запускать ее имеет смысл только каждый другой день.В месяц это означает 15 циклов стирки. Таким образом, мы используем следующую модификацию нашей формулы потребления электроэнергии:

Месячная стоимость = потребление на 1 цикл стирки x количество циклов в месяц x цена 1 кВтч

0,52 кВтч x 15 × 0,70 злотых = 5,46 злотых

Годовая стоимость = расход на 1 цикл стирки x количество циклов в год x цена 1 кВтч

0,52 кВтч x 15 × 12 × 0,70 злотых = 65,25 зл. производства много денег для нас.Достаточно, чтобы начать небольшой прачечный бизнес в многоквартирном доме. К сожалению, это зависит. Если посмотреть инструкцию, то окажется, что это результат только для программ режима эко, т.е. стирка при температуре 40° - 60°С. Даже если постараться, не всегда можно ими пользоваться. Они будут исключены, если мы торопимся или у нас есть белье, используемое для стирки холодным человеком.

В случае с образцовой моделью стиральной машины вполне возможно, что мы купим ее соблазнившись программой активной пены.Производитель его много рекламирует, но в экологическом режиме он не работает. Как и большинство из 20 программ, которые есть у этой модели стиральной машины. Различия также не символические:

Потребление энергии для одной и той же модели стиральной машины в зависимости от программ:

Среднее потребление за цикл: 0,52 кВтч

«Хлопок 60»: 1,587 кВтч

«Хлопок 60» активная пена»: 2001 кВтч

Стирка через день с программой «Хлопок 60 с активной пеной» изменит наши 90 025 ежемесячных затрат на электроэнергию следующим образом:

2 кВтч x 15 x 0,70 зл = 21 зл (не 5,46 злотых)

90 025 Годовые расходы также будут более серьезными:

2 кВтч x 15 × 12 × 0,70 злотых = 90 025 252 злотых (не 65,25 злотых)

По сравнению с ценами в прачечных все еще хорошо, но в 4 раза дороже, чем указано на этикетке энергопотребления.Более того, подобные различия являются нормой, независимо от класса устройства и производителя. Bosch, Haier, LG, Samsung, Siemens и безымянные стиральные машины имеют спрос на электроэнергию, который зависит только от программы, которую мы запускаем.

Сколько электроэнергии потребляет печь?

Несмотря на то, что электрическая духовка не похожа на нее, в ее работе есть общие черты с каждым из рассмотренных выше электроприборов. Подобно чайнику, он преобразует электроэнергию в тепло, и, подобно холодильнику, его назначение — поддерживать нужную температуру внутри.Тем не менее, его потребность в электроэнергии лучше всего оценивать, рассматривая его как стиральную машину. Единственная разница в том, что мы можем пропустить руководство и остановиться на маркировке энергоэффективности.

Пример энергощита электрической духовки

Производители и продавцы печей обязаны быть честнее тех, кто предлагает нам стиральные машины. Они должны информировать покупателя о двух показаниях спроса на электроэнергию. Одна для обычного выпекания, а другая для выпекания в конвекционном режиме.Они также должны представлять результаты в виде среднего значения за 100 часов, а не в виде замкнутого цикла.

Эти результаты можно считать значимыми, поскольку желаемый уровень температуры не имеет большого значения для энергопотребления. При включении питания нагревательные элементы духовки нагреваются до одинаковой степени. Вне зависимости от того, хотим ли мы достичь температуры внутри устройства 220°С или 80°С. Терморегулятор обеспечивает соблюдение желаемого результата. Если температура достаточно высока, он блокирует питание.В моменты, когда температура начинает падать: он их активирует. Нагрев рабочей камеры до более высокой температуры занимает больше времени, но общее время приготовления важнее. Чем дольше печь должна поддерживать нужную температуру, тем больше раз она должна активировать нагревательные элементы и потреблять значительное количество энергии.

Исключениями, для которых маркировка энергоэффективности духового шкафа может оказаться бесполезной, являются режимы гриля и приготовления на пару. Их назначение — специфическое распределение тепла внутри устройства, что может быть связано с необычными потребностями в энергии.Если они наиболее интересны для нас, мы должны искать результаты в руководстве.

Как рассчитать, сколько будет стоить печь хлеб?

Показания энергетического ярлыка духовки можно использовать для расчета того, сколько мы тратим ежемесячно или ежегодно на ее использование, а также для оценки того, насколько выгодно готовить самостоятельно. Оказывается, например, владельцев печей, пользующихся предложением пекарни, можно сделать серыми.

Есть такое понятие, как хлеб на закваске.Если мы хотим приготовить его дома, нам понадобятся: мука, вода и соль. Чтобы потратить на эти ингредиенты больше 4 злотых, нужно очень постараться. Конечно, время – деньги, но без преувеличения. Закваска требует определенного процента в течение 5 дней, а замес теста требует нескольких минут силы.

Хотя взаимодействие с духовкой звучит серьезно, это совсем не сложно. Это, конечно, нельзя считать и финансово радикальным. Выпечка буханки хлеба занимает около часа, и в большинстве рецептов приходится выбирать одну из обычных программ.Поэтому необходимо разогревать устройство в течение 5-10 минут, а сама программа будет не самой энергоэффективной. Если не совмещать (а можно), то работа духовки занимает около 70 минут. За это время устройство с классом энергопотребления А+ будет потреблять максимум 0,97 кВтч.

Одна выпечка хлеба стоит нам:

0,97 кВтч x 1,17 ч (70 минут) x 0,70 злотых = 0,79 зл. Для них мы увидим сумму около 7,9 злотых в ежемесячном счете за электроэнергию.Мы также можем сократить эти расходы, выпекая два хлеба одновременно и реже запуская печь. Аналогичные затраты можно ожидать и при использовании хлебопечки, но духовка — более универсальное устройство.

Как экономно использовать печь? №

Стремление к очень энергоэффективному использованию электрической духовки имеет смысл только в том случае, если вы используете ее часто. Например, методом проб и ошибок мы можем научиться довольно точно предсказывать, когда его выключать.Отключение питания не снизит температуру внутри сразу, и многие блюда смогут готовиться только четверть часа.

Производители электрических духовок, чтобы снизить их энергопотребление, также рекомендуют приемы, которые можно использовать, но не всегда стоит. Например, желательно не открывать дверцу и одновременно готовить несколько блюд. Вроде и готово, но иногда нужно воткнуть палочку в тесто и полить соусом часть мяса.Кроме того, время приготовления двух блюд обычно разное, и одно приходится добавлять, пока готовится другое. Еще не родился человек, который совершал любое из вышеперечисленных действий, не открывая дверцу классической печи.

Сколько стоит смотреть телевизор?

Телевизоры — это электрические устройства, которые делают гораздо более интересные вещи, чем стиральные машины и чайники. Тем не менее, оценка их спроса на электроэнергию аналогична. Для этого нам нужны только энергетические метки.Они содержат информацию о количестве электроэнергии, которое телевизор потребляет за 1000 часов работы, а модели, оснащенные HDR, также включают информацию о значении для этого режима. Однако это не означает, что мы не столкнемся с несколькими неприятными сюрпризами.

В прошедшем 2020 году в наших домах чаще всего появлялись новые телевизоры Samsung с диагональю экрана 65 дюймов. В примере мы будем учитывать возможности идеального телевизора Samsung QLED QE 65Q80T 65 для геймеров.

Samsung QLED TV QE65Q80TAT

По информации производителя, его максимальная потребляемая мощность составляет 280 Вт и может быть снижена до 107 Вт, если мы активируем экономичный режим.Среднее потребление за 1000 часов работы составляет 137 кВтч. Мы хотим посчитать, во сколько нам обходится просмотр телевизора с его помощью, поэтому берем указанное среднее значение. Согласно ему, энергопотребление телевизора составляет 0,137 кВтч. Определяем, что эта деятельность занимает у нас 4 часа в день, что составляет 28 часов в неделю, и целых 120 часов в месяц.

Еженедельная стоимость потребления электроэнергии при просмотре телевизора:

0,137 кВтч x 28 ч x 0,70 злотых = 2,68

PLN Месячная стоимость: 90 047

0,137 кВтч x 120 ч x 0,70 PLN = 14,27 PLN.

Это небольшие суммы, но их сложно рассматривать как какой-либо универсальный фактор, определяющий стоимость наличия телевизора в нашем доме.

В первую очередь к этим значениям зритель должен добавить энергопотребление периферии, например домашнего кинотеатра или приставки цифрового ТВ. Они также не живут воздухом и нуждаются в электричестве, за которое мы платим.

Также важно, чтобы рекомендации на этикетке энергопотребления относились к среднему потреблению энергии при «типичном использовании», т. е. при воспроизведении мультимедиа.Между тем, умные телевизоры могут делать многое, сравнимое с персональными компьютерами. Время от времени они обновляют свою операционную систему и загружают в приложение новые данные. Эти мероприятия выжимают больше из своих составляющих и в такие моменты спрос ТВ на электроэнергию хоть и не слишком резко, но все же возрастает.

Сами мультимедиа также могут поступать из различных источников, не только из традиционного телевидения, которое изменяет их энергетические потребности. Они часто требуют загрузки из сети и постоянного подключения к Интернету.Даже поддержание соединения WiFi потребляет электроэнергию.

Конечно, все эти действия можно ограничить, а рациональное использование телевизора позволит нам поддерживать расходы на электроэнергию на достойном уровне. В действительности, однако, его использование может быть даже на 10-20% выше, чем указано на маркировке энергоэффективности.

Как снизить потребление электроэнергии телевизором?

Прежде всего, есть несколько параметров, которые следует учитывать при покупке телевизора.Важно следующее:

  • количество энергии, потребляемой телевизором в режиме ожидания

Телевизор, к которому мы предоставляем электрическую розетку, может находиться в режиме ожидания большую часть дня. Мы не можем ежедневно лишать его питания, если он хочет быть удобным Smart TV. Приличные значения для дежурного режима должны быть в районе 0,5 Вт, что является потребностью на уровне 0,0005 кВтч.

  • Размер экрана телевизора

Большой телевизор - это хороший телевизор, но чем больше площадь экрана, тем выше потребление электроэнергии, а если серьезно.Тот же Samsung QW 65Q80T 50 потребляет за 1000 часов не 137 кВтч, а 87 кВтч энергии. Это на 50 кВтч меньше, а экран всего на 15 дюймов меньше.

  • Технология распределения света

Заметная разница в потреблении электроэнергии также гарантируется технологией распределения света, используемой в телевизоре. Хотя модели с OLED- и QLED-экранами дороже моделей с классическими ЖК-диодами, они потребляют гораздо меньше энергии. Инвестировать в них стоит даже больше, поскольку у нас есть до 8 лет, чтобы амортизировать более высокие удельные затраты.Это срок службы выпускаемых в настоящее время телевизоров.

Это не значит, что уже знакомый нам телевизор не может снизить свои потребности в энергии. Чтобы побудить его к этому, просто обратите немного внимания на его настройки. Мы найдем в них множество опций, энергозатратных и не обязательно активировать их постоянно, потому что мы все равно не будем их использовать.

Например, нам не всегда приходится смотреть утренние новости в UHD-качестве с включенным HDR.Интересные катастрофы случаются редко, и политики лишь изредка грешат красотой. Нам достаточно, чтобы телевизор автоматически запускался в экономичном режиме. Нам также не придется полностью отказываться от высоких параметров воспроизведения или запускать их только вручную. Многие телевизоры имеют возможность активировать определенные функции в зависимости от источника сигнала (например, только при работе с приставкой) и даже от времени. Дополнительная подсветка области экрана имеет смысл только в помещениях без естественного источника света и мы мало что потеряем, отключив их на светлое время суток.

Сколько электроэнергии потребляет компьютер?

Нет однозначного ответа, сколько электроэнергии потребляет средний компьютер. Один и тот же расчетный набор может использовать от 1,2 кВтч до 0,05 кВтч. Причина таких резких различий заключается в том, что не существует ни среднего компьютера, ни его среднего пользователя. На энергопотребление этих устройств влияют три переменные:

  • возможности компонентов

Наиболее энергоемкими компонентами компьютеров являются видеокарты и процессоры.Тем не менее, любой, кто хоть раз задумывался о самостоятельной сборке компьютерного комплекта, хорошо знает, что самым ответственным компонентом является блок питания. Тот, у которого мощность 1200 Вт, способен питать компьютер гораздо большими дозами электричества, чем его коллега мощностью 500 Вт. Это имеет большое значение для энергетических потребностей компьютера, но ничего не скажет нам о что это такое на самом деле. Есть несколько моментов, когда все компоненты устройства используют свою максимальную мощность. Между тем такая ситуация определялась максимальной мощностью БП, а точнее, максимальной мощностью за вычетом резерва, который мы посчитали разумным при комплектации компьютерного комплекта.

  • установленное программное обеспечение

Используемое нами программное обеспечение отвечает за степень использования возможностей компонентов. Это заставляет их действовать более или менее интенсивно. К сожалению, требования к программному обеспечению также не будут окончательными, и мы не можем рассматривать их независимо от других переменных.

Мы можем ожидать, что программа, которая не может быть обработана слабым процессором, будет более энергоемкой. Однако, если мы используем его для питания компьютера с более высокими компонентами, чем его минимальные требования, мы можем ожидать экономии энергии.Все процессы будут выполняться быстрее и даже за счет большего энергопотребления, они будут недолговечны, а наши затраты будут ниже.

Но самая сложная часть этой головоломки — человек. В конечном счете, именно он определяет интенсивность использования программного обеспечения, и его привычки в наибольшей степени трансформируются в энергопотребление компьютера.

Как использовать компьютер с низким энергопотреблением?

Не существует полного набора рекомендаций по энергосберегающему использованию компьютера.Единственное, что может быть полезно для нас, — это осознавать ситуацию, когда он потребляет энергию без надобности.

Компьютер и пользователи. Фото Аня Никлас

Например, мы не всегда совершаем ошибку, оставляя неиспользуемый компьютер без дела. Сон в одиночестве означает, что он все еще потребляет энергию. Программы могут работать в фоновом режиме, могут происходить автоматические обновления. Одно лишь поддержание подключения к Интернету стоит денег. Оставлять компьютер в таком состоянии на 24 часа — не энергосберегающая идея.Однако самое энергозатратное — запуск системы и крупные обновления. Выключение компьютера только потому, что он не нужен в течение двух часов, является неэффективным с точки зрения энергии.

Когда дело доходит до установки и управления программным обеспечением, экономия и порядок являются ключевыми факторами. Привычка регулярно перемещать данные в облако или на внешний носитель снизит энергопотребление компьютера. Тем не менее, мы выиграем намного больше, если будем думать при установке программного обеспечения. Чем ниже требования к продукту, который мы выбираем, тем менее энергозатратным он будет.

Программное обеспечение, однако, обновляется, и внесенные таким образом изменения имеют право превратить экономичный календарь или программу электронной почты в тихого похитителя энергии. Вопреки видимому, найти таких правонарушителей очень просто. Для этого пригодится диспетчер задач Windows. Информация, которую мы там находим, позволяет нам находить программы, потребляющие подозрительно много энергии, а также те, которые появились у нас на заднем дворе, не полностью сознательно приглашенные.

Также рекомендуется ограничить автоматический запуск программ при запуске операционной системы.Часто это не нужно, но требует времени и заставляет компьютер работать более интенсивно в очень энергочувствительный момент. Чем раньше он закончит запуск операционной системы, тем меньше энергии он будет потреблять и не стоит усложнять ему задачу.

Тем не менее, функция автоматического запуска не зря была придумана. Есть программы, предназначенные для работы. Именно этого мы ожидаем от почтовых приложений и мессенджеров. Как только наше внимание привлекут автоматически срабатывающие, мы должны оставить эту функцию им.Точно так же мы не всегда полностью свободны в выборе программного обеспечения, которое используем. Архитектор не может отказаться от AutoCAD, а для фотографа Photoshop и Lightroom не являются заменой графических программ. Если программное обеспечение означает для нас удобство использования, единственный способ сэкономить энергию — это инвестировать в более эффективные компоненты.

Сколько стоит электричество для игр?

Игровой компьютер уже представляет собой очень специфическую категорию компьютерного оборудования.Правильный набор компонентов и программного обеспечения в первую очередь не подводит, когда мы смело перемещаемся по неизведанным областям виртуальной вселенной. Поэтому определить, сколько энергии вам нужно для всего этого, гораздо проще, чем с компьютером для кого угодно.

Для выполнения своей задачи игровой компьютер среднего уровня должен работать с мощностью 120 Вт - 400 Вт . Только в случае высокой динамики игры с высоким качеством это требование может возрасти и превысить даже 1000 Вт.Это означает, что потребность в энергии соответствующей машины составляет от 0,12 кВтч до 1,1 кВтч. Разница огромная, но она касается экстремальных ситуаций, и мы не совершим грубую ошибку, если примем за то, что игровой компьютер способен потреблять 0,5 кВтч .

Затраты на потребление электроэнергии при игре на ПК рассчитываются следующим образом:

Среднее потребление энергии x время в часах x цена 1 кВтч.

Наша симуляция предназначена для компьютера, используемого добросовестным игроком-любителем.Они проводят за игрой не менее 5 часов в день, около 40 часов в неделю и около 150 часов в месяц.

Ежедневные затраты на электроэнергию игрока:

0,5 кВтч x 5 HX PLN 0,70 = PLN 1.75

Игрок Ежемесячные расходы:

0.5 кВтч х 150 HX PLN 0,70 = 52,50 PLN

Мы можем быть уверены, однако, однако, что развлечения нашего типичного геймера потребляют больше электроэнергии. Более 50 злотых в месяц — это только стоимость энергии, потребляемой компьютером. Вам необходимо включить мышь, клавиатуру, динамики, монитор, игровое кресло и т. д.Многое зависит и от самого комплекта компьютера. По сути, чем он мощнее, тем больше электроэнергии ему может понадобиться. Однако достаточно правильно сбалансированного подбора компонентов, чтобы сделать его менее прожорливым, чем он может.

Сколько электроэнергии потребляет игровая приставка?

В идеале, когда и консоль, и компьютер служат только одному правильному виду деятельности (играм в игры!), консоли дают нам больше шансов сэкономить деньги. Даже самые строгие оценки для PlayStation 5 и Xbox Series X не превышают энергопотребление в 0,3 кВтч.Если вы используете их около 150 часов в месяц, мы не будем использовать более 45 кВтч, что, учитывая текущие цены на электроэнергию, означает плату в размере 30 злотых в месяц. Компьютер будет стоить нам более 50 злотых.

Кроме того, PlayStation 5 и новейшая Xbox по-прежнему остаются в уголках геймеров и предъявляют более высокие требования, чем их предшественники. Исходя из тестов, сопровождающих оценку того, сколько стоит играть в игры, PlayStation 4 PRO и Xbox One, мы лишь изредка можем заподозрить аппетит до 0,2 кВтч.

Более того, энергопотребление консоли может быть снижено без больших потерь для комфорта игрока. Стоит помнить, что приставки:

  • потребляют много энергии в режиме ожидания, особенно при активной загрузке данных в фоновом режиме (не всегда нужно)
  • игра, использующая обратную совместимость консоли, требует меньше энергоресурсов, чем версия, предназначенная для используемой модели (с точки зрения пользователя, игра выглядит одинаково)
  • высокие параметры воспроизведения увеличивают энергопотребление (и они имеют смысл только в случае новых игр и их воспроизведения на экране, способном на это)
  • приставка в качестве источника потокового вещания потребляет на ⅓ электроэнергии больше, чем при запуске приложений на смарт-ТВ.

Практические способы снижения потребления электроэнергии приставками также доступны в их обзорах:

Сколько электроэнергии потребляют устройства с питанием от аккумулятора: телефон, ноутбук и планшет?

Неприятная новость для всех злостных переносчиков бытовой электроники в офисы и на рабочие места, но зарядка телефона или планшета в офисе не особо обременительна для электросети. Работодатель, увидев счет за электроэнергию, не имеет шансов заметить, что он что-то потерял.Точно так же экономически неоправданно запрещать подзарядку частной электроники в офисе или школе.

Как рассчитать потребность в электроэнергии при зарядке аккумулятора телефона?

Насколько абсурдны вышеперечисленные действия, можно убедиться даже на примере Samsung Galaxy M51, в котором установлен аккумулятор емкостью 7000 мАч, минимальное напряжение которого стандартно для литий-ионных аккумуляторов 3,7 В.

Samsung Galaxy M51 6/128 ГБ

Эти параметры означают, что при зарядке в течение часа аккумулятор с напряжением 3,7 В может потреблять 7 А тока (Ач).

Перемножая эти два значения, мы узнаем, сколько энергии требуется для процесса зарядки от 0% до 100%:

7 А x 3,7 В = 25,9 Втч

Чтобы иметь возможность оценить затраты, мы должны изменить Втч в кВтч:

25,9 Вт / 1000 = 0,0259 кВтч.

Чтобы точно предсказать, сколько мы платим за электроэнергию, необходимую для использования телефона, нам необходимо знать, сколько времени требуется для полной зарядки аккумулятора и как часто нам приходится его подзаряжать. По словам производителя устройства, его батареи хватит на 3 дня использования.Эта информация абстрактна в повседневной жизни. Никто не хочет рисковать полной разрядкой телефона, и мы заполняем более мелкие пробелы. Поэтому, пока наши оценки будут завышены, мы будем считать, что заряжаем телефон каждый день по часу.

Мы будем платить за зарядку Телефон:

Daily 0.0259 кВтч x 1 HX 0,70 PLN = 0,02 PLN

Ежемесячно : 0,0259 WH X 30 HX 0,70 PLN = 0,54 PLN

Результатом результат идеальные предположения и будут разными для разных моделей телефонов или даже для близнецов, но с разным пользовательским опытом.Однако это преувеличение и можно смело ожидать, что его загрузка обходится нам в копейки в месяц. Нет смысла пытаться получить больше сбережений.

Если очень хочется, то есть смысл воздержаться от активного использования телефона во время его зарядки. Это будет более эффективно, поскольку уровень энергопотребления в первую очередь зависит от запущенных приложений. Если мы хотим увидеть, каков их эффект, мы можем использовать ваттметр или использовать приложение, которое дает аналогичные результаты, например бесплатный Ampere.

Сколько электроэнергии потребляет ноутбук?

Аналогичное моделирование затрат энергии может быть выполнено для аккумуляторов планшетов и ноутбуков. Однако в случае с компьютерами не следует забывать, что они способны выполнять более энергоемкие процессы, чем другие мобильные устройства, и мы используем их иначе. Мы позволяем аккумулятору реже разряжаться и чаще используем его от сети. Тот факт, что их батареи более емкие, дополнительно делает процесс их износа более заметным.

Таким образом, определение энергопотребления ноутбука должно производиться на основе отчета с указанием состояния батареи конкретного устройства. Скачивание данных из него избавит нас от неправильного определения емкости батареи (она уменьшается в процессе использования) и иллюзии, что мы используем только энергию батареи.

Как загрузить отчет об аккумуляторе ноутбука Windows?

Чтобы его получить, ищем командное окно (оно появится после ввода «cmd» в поисковике компьютера), и в нем задаем: powercfg /batteryreport и подтверждаем клавишей Enter.Выполнение задачи будет подтверждено информацией о пути доступа к html файлу с отчетом.

Заходим в указанное место и открываем файл в веб-браузере.

Содержит всю необходимую информацию о батарее нашего ноутбука. Помимо данных о самом компьютере: его модели, версии BIOS и т. д., вы найдете информацию о серийных номерах аккумулятора, технологии, по которой он был построен, но прежде всего указание на его реальную емкость:

Отчет о состоянии аккумулятора ноутбука, которым пользовались почти 4 года.Текущая емкость аккумулятора не имеет ничего общего с его первоначальным состоянием.

Намного больше мы можем увидеть в дальнейшей части отчета. Например, когда уменьшилась емкость аккумулятора и сколько циклов заряда можно от него ожидать.

При оценке питания лаплапопа также полезен раздел Recent Usage, в котором видно время работы батареи за последние 72 часа:

Время работы батареи выделено фиолетовым цветом

Просмотр более длинной истории работы на других источниках питания также можно найти в разделе История использования:

Используя только технические характеристики аккумулятора, мы получили бы только следующие данные:

  • Тип аккумулятора: литий-ионный.
  • Цвет: черный.
  • Напряжение: 10,8 В
  • Время зарядки: 3 часа (при выключенном устройстве), 4-5 часов (при активной операционной системе)
  • Емкость: 48,4 Втч 4400 мАч.

При емкости 48,4 Втч и времени зарядки до 3 часов одна полная зарядка аккумулятора ноутбука должна стоить вам копейки.

Даже беглое прочтение отчета говорит о том, что это не так дешево по многим причинам. Прежде всего, ноутбук время от времени потребляет заряд батареи.Умножить стоимость одной зарядки на количество зарядок в месяц или год невозможно. Решающей ситуации, наверное, никогда не было, потому что один полный заряд батареи означает, что она восполнена с 0% до 100%. Аккумуляторы ноутбуков редко разряжаются полностью, и лишь немногие пользователи заряжают устройство только тогда, когда оно выключено. В этом случае остановка работы или закрытие экрана ноутбука не имеет никакого эффекта, поскольку операционная система не была деактивирована. Часть энергии по-прежнему потребляется на постоянной основе и не используется для зарядки.

Любые оценки количества необходимых зарядов также не так просто определить. Иногда мы прощаемся с запасом только через 10 часов, а иногда его не хватает и на 4. Все зависит от того, чем мы занимаемся. Системная информация, доступная в этом отношении, всегда относится к текущему состоянию. Если мы запустим или остановим требовательную программу, ожидаемое время работы от батареи изменится.

Тот факт, что ноутбук имеет некую максимальную мощность, также не является надежным показателем.Компьютер не будет использовать его ни часто, ни постоянно.

Хотя в портативных компьютерах есть батареи, емкость и время зарядки которых мы можем знать, их фактические потребности зависят от тех же переменных, что и энергопотребление персонального компьютера. По сравнению со стационарными компьютерами ноутбуки потребляют меньше энергии, но их пользовательские привычки и программное обеспечение являются ключевыми переменными для их энергопотребления.

Как экономить энергию с помощью электрических устройств?

Экономное использование электричества не обязательно должно ассоциироваться с большой революцией или избавлением от чего-либо из дома.В первую очередь иногда стоит заглянуть в инструкции по эксплуатации электрических устройств, которые уже есть у нас дома. В нашей стиральной машине могут быть энергосберегающие программы, о которых мы забыли, а в холодильнике есть возможность изменения температуры и стоит подстроить ее под то, что мы в ней храним.

Большие инвестиции не обязательно означают покупку дорогой модели устройства самого высокого класса энергопотребления. Система умных розеток и мониторинг потребления электроэнергии могут принести нам гораздо большую экономию.С их помощью легче найти вокруг себя ненужных любителей нашего электричества и мы сможем уменьшить их долю в счете за электроэнергию.

.Потреблено 90 000 тысяч киловатт-часов. Мы посчитали, как сэкономить на электричестве

Сколько это стоит?

С самым популярным в Польше тарифом G11 (фиксированный 24 часа в сутки), мы платим в среднем 0,55 злотых за кВтч электроэнергии. В эту сумму входят: затраты на приобретение электроэнергии и услуги по передаче, собственные затраты и маржа электрораспределительной компании, налоги, включая НДС и местные налоги, и акцизный сбор.

Владелец двухкомнатной квартиры потребляет в среднем 2000 кВтч в год.Ежемесячно он платит около 90 злотых за само потребление. В трехкомнатной квартире потребление увеличивается до 2800 кВтч, а счета составляют примерно 130 злотых. Энергоснабжение дома при среднем годовом потреблении 5000 кВтч стоит около 230 злотых в месяц. Конечно, есть и другие расходы.

Меньше всего за электроэнергию будут платить жители Труймясто - 0,298 злотых/кВтч. Не намного больше жителей Белостока 0,299 злотых / кВтч, большая часть Варшавы 0,339 злотых / кВтч. В этом случае вы также должны учитывать ежемесячную торговую комиссию

Что увеличивает наши счета?

Потребление энергии, очевидно, зависит от количества и интенсивности использования электроприборов, которые есть у нас дома.Телевизор мощностью 150 Вт, который смотрят четыре часа в день, потребляет 219 кВтч в год, что стоит нам 148 злотых. Стиральная машина мощностью 2000 Вт, которую включают через день, стоит 365 кВтч в год и 247 злотых. Посудомоечная машина (2000 Вт), без которой многие люди не могут представить свою жизнь, также работающая через день, составляет 183 кВтч и 123 злотых. Холодильник (70 Вт) - 613 кВтч и 415 злотых; микроволновая печь или духовка (1500 Вт) - 181 кВтч и 122 злотых; включенный через день пылесос (1500 Вт) - 91 кВтч и 61 злотый; компьютер (150 Вт), используемый два часа в день - 110 кВтч и 74 злотых.

Вы можете попытаться сократить эти затраты, вложив средства в несколько более дорогое, но энергосберегающее оборудование. Но об этом чуть позже.

Счет не только для постоянных

Длинный и часто непонятный счет можно разделить на две части: плата за использованную энергию (за определенное количество киловатт-часов) и плата за распределение.

В зависимости от поставщика наименования фиксированных и переменных расходов, указанных в счете-фактуре, могут различаться. Продавец взимает с нас, например.: для коммерческого обслуживания переменная составляющая сетевого тарифа (из которой покрываются возможные потери при передаче), качественная ставка (т.е. плата за то, что в розетку подается электроэнергия определенного качества), переходная плата (защита в случае отключения электроэнергии), фиксированная составляющая плата за качество (вы будете обслуживать сеть) или абонентская плата.

Мы инвестируем в энергосберегающее оборудование

Если вы хотите снизить счета за электроэнергию, вы можете купить оборудование с более высоким классом энергопотребления: А+, А++, А+++.Хотя они и дороже, в долгосрочной перспективе они позволят вам держать в кошельке неплохую сумму. Примерная модель стиральной машины одного из производителей с классом энергопотребления A +++ потребляет 119 кВтч в год, что стоит 65,45 злотых. Другая модель от другого производителя еще более экономична - она ​​потребляет 116 кВтч в год, за что мы заплатим 63,80 злотых. Рекордно низкое потребление на уровне 58 кВтч стоит 31,90 злотых и позволяет сэкономить до 215 злотых в год, а на уровне 103 кВтч (56,65 злотых) - 190 злотых.

Что касается самых экономичных холодильников, то холодильники энергетического класса A +++ потребляют 180 кВтч (99 злотых), 148 кВтч (81,40 злотых), 121 кВтч (66,55 злотых) и даже 78 кВтч (42,90 злотых).В этом случае можно говорить об экономии до 300-370 злотых в год.

В основе также замена лампочек. Эти инвестиции также окупятся для нас. Энергосберегающие галогенные лампы потребляют целых 30 процентов. меньше энергии, чем традиционные, и компактные люминесцентные лампы на целых 80 процентов. Эквивалентом 100-ваттной лампочки являются люминесцентные лампы мощностью 20 Вт и светодиоды мощностью 11-15 Вт

Может пора что-то менять?

На протяжении нескольких лет каждый из нас также имел право выбора поставщика электроэнергии.Но мы все еще стесняемся этого изменения. До конца июля 2017 года этой возможностью воспользовались всего 517 000 человек. получатели.

Для сравнения, в Великобритании это несколько миллионов человек в год. Почему это происходит? Мы привязаны к текущему поставщику и не знаем, как его сменить. Мы ошибочно думаем, что это сложный процесс. При этом мы работаем аналогично смене мобильного оператора.

Это новый поставщик электроэнергии, он позаботится о формальностях для нас.Также все можно определить по телефону или интернету. Новый контракт будет доставлен к нам курьером.

Смена поставщика означает дополнительную экономию на счетах. Пример?

Предложение финской компании Fortum, которая также работает на польском рынке продажи электроэнергии и газа.

Компания работает в нескольких странах. В настоящее время она продает электроэнергию более чем миллиону клиентов.

Мы предлагаем десятичасовой доступ к бесплатному электричеству.Электричество предоставляется бесплатно с 13:00 до 15:00 и с 22:00 до 6:00.

Компания гарантирует, что и в оставшиеся часы электроэнергия будет дешевле, чем у текущего поставщика.

- Ключом к увеличению экономии является сознательное использование электроприборов. Мы можем запрограммировать стиральную или посудомоечную машину на ночное время, а глажение запланировать на субботу, с 13 до 15 часов, – советует Мацей Косциньски из Fortum.

По оценкам Fortum, благодаря частичному переводу потребления электроэнергии на бесплатные часы жители трехкомнатной квартиры в Варшаве будут экономить до 550 злотых в год.В случае с домом на одну семью сумма сбережений может увеличиться до 1000 злотых.

Партнер статьи Fortum

.

Смотрите также