8 (913) 791-58-46
Заказать звонок

Оригами и математика исследовательская работа в начальной школе


ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА "ОРИГАМИ И МАТЕМАТИКА"

ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА "ОРИГАМИ И МАТЕМАТИКА"

Халиуллин Т.Т. 1

1МБОУ СОШ N 2 г.Туймазы

Шайхуллина Г.Ф. 1

1МБОУ СОШ N°2 г.Туймазы

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Искусство оригами увлекло меня два года назад. Первоначально мы вместе с мамой складывали несложные фигуры из бумаги, затем фигуры становились сложнее. Конечно, это было не обучение, а игра – волшебное превращение простого листочка в игрушку. Оригами – это идеальный конструктор, который состоит из одной детали (листа), с помощью которой создается бесконечное разнообразие форм, складываются тысячи и тысячи разных фигурок.

Актуальность.

Оригами – удивительное искусство бумажной пластики. Сегодня множество людей во всем мире увлекаются искусством «оригами». Бумажные фигурки делают и взрослые и дети, художники и конструкторы. Я заметил, что, складывая фигурки оригами, сталкиваюсь с математическими понятиями. Мне стало интересно, как связаны таинственное искусство складывания фигурок из бумаги оригами и давно интересующая меня математика.

Цель работы. Расширение знаний об истории развития оригами, выяснение, каким образом математика проявляется в оригами.

Задачи.

  1. Изучить понятие, историю происхождения, виды оригами;

  2. Исследовать связь математики и оригами на примере модульного оригами;

  3. Научить одноклассников создавать различные фигуры в технике модульного оригами и заинтересовать их данной работой;

  4. Разработать буклет для одноклассников с описанием последовательности выполнения фигуры павлина в технике «Модульное оригами».

Объект.

Оригами в математике.

Предмет исследования.

Модульное оригами.

В процессе изготовления фигур оригами я открыл для себя удивительное явление: из плоского листа бумаги появляется объемная фигура. Если развернуть фигурку оригами, и посмотреть на складки, то можно видеть множество многоугольников. И здесь я столкнулся с математическими понятиями и подумал, что с помощью оригами, можно показать, что математика не скучная наука, а красота и гармония.

Так появилась гипотеза: искусство оригами тесно связано с математикой и может стать хорошей основой для ее изучения.

Методы исследования.

Поиск и анализ информации в Интернете, библиотеке, практическая работа, описание, обобщение, фотосъемка.

Глава 1. Теоретическая часть.

1.1. История оригами

Знакомство с оригами следует начинать с древней истории. Именно там, в Древнем Китае, в 105 году нашей эры появились первые предпосылки для возникновения оригами - искусства складывания любых фигурок из квадратного листа бумаги без использования ножниц и клея.

Первые листочки бумаги, сложенные в необычные фигурки, появляются сначала в монастырях. Фигурки из бумаги имели символическое значение. Они становились участниками религиозных церемоний. Украшали стены храмов.

Со временем оригами стало придворным искусством. Им могли заниматься лишь избранные, так как бумага была редким и весьма дорогим материалом. Японцы использовали бумажные фигурки для того, чтобы передать то или иное послание другому человеку. Например, записки, сложенные в форме бабочки, журавля или цветка, были символом дружбы и доброго пожелания. Только человек, владеющий искусством оригами, может аккуратно развернуть и прочитать послание, не предназначенное для посторонних глаз. Умение складывать стало одним из признаков хорошего образования и изысканных манер. Различные знатные семьи использовали фигурки оригами как герб и печать. Далее бумага перестает быть предметом роскоши, и оригами начинает распространяться и среди простого народа. Именно тогда, триста – четыреста лет назад, изобретается ряд фигур, которым суждено было стать классическими. Среди них и японский журавлик «цуру» – традиционный японский символ счастья и долголетия, а теперь и международный символ свободы и мира.

Однако настоящее революционное развитие оригами началось только после Второй мировой войны, главным образом благодаря усилиям всемирно признанного теперь мастера Акиры Йошизавы. Акиро Йошизава работал на машиностроительной фабрике, где помимо основной работы ему поручили учить новичков читать чертежи. При этом он начал активно использовать оригами, объясняя с помощью складывания азы геометрических понятий. Эти занятия имели успех и вызывали неподдельный интерес. Он изобрел сотни новых, ранее неизвестных фигур. Он не только доказал, что искусство складывания может быть широко применимо на практике, но и способствовал его распространению. С помощью изобретенных им несложных условных знаков процесс складывания любого изделия оказалось возможным представить в виде серии рисунков - чертежей.

Новый поворот в истории оригами тесно связан со страшной трагедией, произошедшей 6 августа 1945 года, когда была сброшена атомная бомба на Хиросиму. Последствия чудовищного эксперимента были ужасны. Каждый, кто брался за оригами, знает историю Садако, девочки из Хиросимы, которая делала журавликов, веря, что это спасёт её от лучевой болезни. Кто-то сказал ей, что, если она сделает 1000 журавликов, она поправится. Садако скоро поняла, что ей уже не станет лучше, она умрёт. И тогда она стала дарить журавликов другим больным. Каждый журавлик, которого делала Садако, был молитвой, молитвой о спасении человека. Девочка успела сложить 644 фигурки и умерла. Её подруги закончили остальных журавликов. Печальная история японской девочки подняла волну детской солидарности во всём мире. Япония стала получать миллионы посылок со всех континентов нашей планеты с бесценным грузом - бумажными журавликами. Так возникло движение «1000 журавликов». Это движение вызвало интерес к японскому искусству оригами.

Искусство оригами в Японии стало традицией, которая передается из поколения в поколение. Историки утверждают, что по манере складывания и набору фигурок можно определить провинцию Японии, в которой выросла и обучалась девушка.

В Европе же в начале XIX века немецкий педагог, создатель первых детских садов Фридрих Фребель впервые начал пропагандировать складывание из бумаги как дидактический метод для объяснения детям некоторых простых правил геометрии. Возможно, именно с его подачи школьники разных стран мира теперь знакомы с небольшим набором "фольклорных" фигурок из бумаги. В настоящий момент оригами превратилось по-настоящему в международное искусство. Сейчас центры оригами открыты в 26 государствах планеты. Оригами развивается, во многих странах созданы общества оригамистов, каждый год проводятся выставки и конференции.

Таким образом, можно сделать вывод о том, что оригами появилось очень давно и в разное время, в разных странах использовалось для различных целей: украшение стен храмов, передача посланий, обучение, игры. В настоящее время оригами завоевало весь мир. С каждым годом, все большее количество людей вовлекаются в это искусство.

1.2. Виды оригами

Существует пять основных видов оригами: простое оригами, складывание по развертке, мокрое складывание, модульное оригами и киригами. Простое оригами

Простое оригами — стиль оригами, придуманный британским оригамистом Джоном Смитом. Этот стиль ограничен использованием только складок, как складки между горой и долиной. Целью оригами является облегчение занятий неопытным оригамистам, а также людям с ограниченными двигательными навыками. (Приложение 1, рис.1)

Складывание по развёртке

Развёртка (англ. creasepattern; паттерн складок) — один из видов диаграмм оригами, представляющий собой чертёж, на котором изображены все складки готовой модели. Складывание по развёртке сложнее складывания по традиционной схеме, но по праву считается наиболее точной и практичной, ведь представляет собою диаграмму, которая нанесена на лист и которой пользуется мастер-оригамист перед складыванием. А линии, которые показаны на диаграмме, есть не что иное, как будущие складки, из которых впоследствии сформируется конечная фигура. (Приложение 2, Рис.2)

Мокрое складывание

Мокрое складывание— техника складывания, разработанная Акирой Ёсидзавой и использующая смоченную водой бумагу для придания фигуркам плавности линий, выразительности, а также жесткости. Особенно актуален данный метод для таких негеометрических объектов, как фигурки животных и цветов — в этом случае они выглядят намного естественней и ближе к оригиналу. (Приложение 2, Рис.3)

Модульное оригами

Эта увлекательная техника — создание объёмных фигур из модулей. (Приложение 3, Рис.4)

Целая фигура собирается из множества одинаковых частей (модулей). Каждый модуль складывается по правилам классического оригами из одного листа бумаги, а затем модули соединяются путем вкладывания их друг в друга. Появляющаяся при этом сила трения не даёт конструкции распасться.

В этой технике можно создавать целые бумажные скульптуры, а также различные полезные предметы, которые можно использовать в быту и преподнести в качестве подарка: коробочки, подставки для мелочей, шкатулки, вазы.

Одним из наиболее часто встречающихся объектов модульного оригами является кусудама, объёмное тело шарообразной формы. (Приложение 4, Рис.5)

Киригами

Киригами - вид оригами, в котором допускается использование ножниц и разрезание бумаги в процессе изготовления модели. Это основное отличие киригами от других техник складывания бумаги, что подчёркнуто в названии: (киру) — резать, (ками) — бумага.

Большинство людей помнит, как в детстве делали бумажные снежинки. Да и взрослые с восхищением и удивлением разворачивают бумажные снежинки, к тому же почти невозможно сделать один и тоже образец дважды. В дополнение к снежинкам можно вырезать различные цветы, паутинки и другие элементы декоративного оформления. Так вот эти бумажные Снежинки и декорации и есть первые шаги в изучении техники Киригами. (Приложение 4, Рис.6)

Таким образом, можно сделать вывод о том, что существует несколько видов оригами, каждый из которых интересен по-своему.

1.3. Оригами – это математика

Многие считают, что оригами, это забава, с помощью которой люди создают различные фигуры, но очень многое в оригами связано с математикой, геометрией.

В процессе складывания фигур оригами мы учимся легко ориентироваться в пространстве и на листе бумаги, делить целое на части, находить вертикаль, диагональ, узнаем многое другое, что относиться к математике и геометрии.

Американский педагог Ф.Фребель предлагал основы геометрии изучать не с помощью линейки, циркуля и некоторых понятий, а на примере фигур складывающейся бумаги. Он активно внедрял оригами в педагогический процесс.

Оригами способствует активности как левого, так и правого полушария мозга, так как требует одновременного контроля за движениями обеих рук. На занятиях по математике при помощи оригами можно повторить следующие понятия:

- горизонтальные, вертикальные, наклонные линии;

- сложи квадрат разными способами, покажи смежные стороны, диагональ;

- квадраты;

- все виды треугольников (Приложение 5, рис.7).

В ходе изучения геометрии с использованием оригами знакомимся с основными геометрическими фигурами (треугольник, прямоугольник, квадрат, ромб, четырехугольник), понятиями (сторона, угол, вершина угла, диагональ, центр фигуры), их свойствами и учимся основам техники оригами.

Работа по схемам, процесс складывания плоскостных фигур направлены на развитие восприятия, которое связано с различными операциями мышления.

По мнению дизайнера оригами Адзума Хидэаки, если развернуть фигуру оригами и посмотреть на складки – то можно увидеть лишь обилие многоугольников, соединенных друг с другом. В сложенном же виде оригами представляет собой многогранник, фигуру с множеством плоских поверхностей, а когда фигура разложена и показаны все складки, то мы можем увидеть множество геометрических фигур.

С точки зрения математики оригами, это точное определение местоположения одной или более точек листа, задающих складки, необходимые для формирования окончательного объекта. Я проанализировал базовые формы оригами (Приложение 6, рис.8) и заметил, что уже при первом знакомстве с этим искусством дети узнают о таких простых геометрических фигурах, как прямоугольник и треугольник. Сам же процесс складывания подразумевает выполнение последовательности точно определенных действий по следующим правилам, которые перекликаются с законами математики:

- точность выполнения инструкции;

- точки определяются пересечениями линий;

- линия определяется либо краем листа, либо линией сгиба бумаги;

- все линии прямые и делятся на два вида параллельные и перпендикулярные.

Таким образом, математика это одна из сторон оригами и наоборот оригами является одной из направляющих математики.

Глава 2. Практическая часть.

2.1. Анкетирование

С целью выяснить, имеют ли представление об оригами и знают ли о том, что оригами связано с математикой, был проведен опрос учащихся 2 «Г» класса на тему: «Оригами» (Приложение 7). Количество опрошенных – 28 человек. В ходе опроса мы узнали, что 80% ребят знают, что такое оригами, 20% - не знают.

50 % опрошенных считают, что оригами способствует развитию интереса у человека, 18 % - мелкой моторики, 12 % - ума, 20% - затрудняются ответить. (Приложение 7).

100% ребят считают, что технику оригами можно использовать на уроках труда.

60% ребят не умеют создавать фигуры в технике оригами, 40% - умеет.

Ребята нашего класса выразили 100% желание научиться создавать фигуры оригами.

Таким образом, можно сделать вывод, что мои одноклассники имеют представление о том, что такое оригами, но считают, что оригами можно использовать только на уроках технологии.

2.2. Мастер-класс «Оригами – это увлекательно»

Исходя из результатов первого анкетирования, и для того чтобы познакомить одноклассников с разнообразием оригами, и убедиться вместе с ними в том, что оригами связано с математикой, в классе мы (с классным руководителем) провели мастер - класс под названием «Оригами – это увлекательно», на котором показали этапы технологии создания модульного оригами, а также рассмотрели развертку модуля с точки зрения математики. Сначала я показал свои работы, сделанные в технике оригами. Далее мы приступили к созданию сердечка в технике модульного оригами. Ребята научились правильно складывать бумагу, создавать модули, с помощью которых потом они собирали сердечко. После создания первого модуля, я попросил ребят развернуть лист, который они сложили, и задал им вопрос: «Что вы видите на листе бумаги?». Они ответили, что видят множество прямых линий (места сгиба), различные фигуры – треугольники, прямоугольники. Таким образом, мы вместе с ними, убедились в том, что с помощью оригами можно изучать различные геометрические фигуры, а значит, мы можем использовать оригами при изучении некоторых тем в школьном предмете «математика». Я рад, что смог научить одноклассников делать модульное оригами. Теперь и они смогут поздравить своих дорогих и любимых мам (близких людей) с праздником и подарить незабываемый подарок, сделанный своими руками. (Приложение 8,10).

После мастер-класса, я еще раз провел анкетирование. По его результатам, можно сказать о том, что мои одноклассники расширили свои знания об оригами и, создавая фигуры оригами, убедились в том, что оригами связано с математикой и может использоваться на уроках математики.

2.3. Беседа учителем математики МБОУ СОШ №8 г.Туймазы Пупышевой В.В.

Для того, чтобы удостовериться в своих предположениях о том, что оригами связано с математикой я также побеседовал с учителем математики высшей категории МБОУ СОШ №8 г.Туймазы Пупышевой Верой Владимировной. (Приложение 12).

На простейшем примере, складывание листа бумаги по вертикали и диагонали, она показала, что мы уже решаем задачи на построение: строим перпендикуляр к прямой, биссектрису угла, высоту треугольника. Учитель отметила, что при решении задач с помощью методов оригами роль прямых играют края листа и линии сгибов, образующиеся при его перегибании, а роль точек – вершины углов листа и точки пересечения линий сгибов друг с другом или с краями листов. Во время беседы мы вместе с учителем выполнили несколько несложных задач методом оригами: разделили один из углов квадрата на три равных угла, построили правильный треугольник. После выполнения задач, Вера Владимировна сказала о том, что точность полученных правильных многоугольников можно проверить с помощью чертежных инструментов либо применить математическое обоснование. Также учитель показала мне изображения готовых разверток различных многогранников, которые изучаются в старших классах.

Во время беседы, Вера Владимировна подтвердила мои предположения о том, что математика тесно связана с оригами. С помощью оригами можно успешно решать различные задачи на построение, также изучать различные геометрические, обьемные фигуры.

Заключение

В ходе исследования мною была проведена следующая работа:

  1. Изучил Интернет-ресурсы и литературу в Туймазинской центральной библиотеке по теме: «Оригами» (Приложение 9)

  2. Проведено анкетирование «Оригами» у учащихся 2 г класса МБОУ СОШ №2 г.Туймазы. (Приложение 7) Причем, анкетирование проводилось два раза. В первый раз анкетирование проводилось с целью выяснить, имеют ли одноклассники представление об оригами и знают ли о том, что оригами связано с математикой. После проведения опроса я сделал вывод о том, что ребята имеют представление об оригами, но считают, что оригами можно использовать только на уроках технологии.

  3. С целью познакомить учащихся с разнообразием оригами и убедиться вместе с ними в том, что оригами связано с математикой, в классе мы (с классным руководителем) провели мастер - класс под названием «Оригами – это увлекательно», на котором показали этапы технологии создания модульного оригами, а также рассмотрели развертку модуля с точки зрения математики. (Приложение 8,10). После мастер-класса я провел второе анкетирование. По его результатам, можно сказать о том, что одноклассники расширили свои знания об оригами и убедились в том, что оригами связано с математикой.

  4. Разработан буклет для одноклассников с описанием последовательности выполнения работы. (Приложение 10)

  5. Проведена беседа с учителем математики МБОУ СОШ №8 г.Туймазы Пупышевой В.В. (Приложение 12)

  6. Создана презентация на тему: «Оригами – это искусство…», которую можно использовать, как демонстрационный материал при изучении на уроках технологии, математики.

Оригами и математика, словно две сестры, которые не терпят неточности и неспешности.

Японское искусство оригами очень широко вошло в нашу российскую жизнь и стало неотъемлемой частью для интеллектуального развития. Оригами способствует в первую очередь развитию математических качеств (наблюдательность, внимание, логическое и пространственное мышление, точность и аккуратность.

На основании изученного можно сделать вывод о том, что оригами:

  1. Развивает способность контролировать с помощью мозга тонкие движения рук и пальцев;

  2. Улучшает пространственное воображение и умение мысленно работать с объемными предметами;

  3. Учит читать чертежи, по которым складываются фигуры;

  4. Знакомит на практике с основными геометрическими понятиями;

  5. Развивает творческие способности.

Значит оригами, действительно помогает изучать математику, то есть я смог доказать гипотезу что искусство оригами тесно связано с математикой и может стать хорошей основой для ее изучения.

Список используемой литературы

  1. Выгонов В.В.Трехмерное оригами.- М.:Издательский Дом МСП, 2007.

  2. Ильина Н.К.Оригами. Необычные модели для развития фантазии. – М.:РИПОЛ классик, 2012.
  3. Н.Г.Юрина. По книге «Я познаю мир», 2004.

  4. Такахаси Коки «Оригами – это математика!»

  5. Эм Г.Э. Путешествие в страну Оригами. Пособие для учителей и родителей.

Интернет- ресурсы

1. http://www.origami-do.ru

2. https://www.origami.ru

3. http:// www.origami.kulichki.ru

4. http://www.origami-modul.ru

ПРИЛОЖЕНИЕ

Приложение 1

Рис.1 Простое оригами

Приложение 2

Рис.2 Складывание по развертке

Рис.3 Мокрое складывание

Приложение 3

Рис.4 Модульное оригами

Приложение 4

Рис.5 Кусудама

Рис. 6 Киригами

Приложение 5

Прямоугольный треугольник

Равнобедренный треугольник

Равносторонний треугольник

Рис.7 Треугольники

Приложение 6

Рис.8 Базовые формы оригами

Приложение 7

Анкета

1. Что такое «оригами»?

2. Развитию каких качеств человека способствует техника «Оригами»?

3. На каких уроках можно использовать технику «Оригами»?

4. Вы умеете создавать фигуры в технике «Оригами»?

4. Хотели бы вы научиться создавать какие-нибудь фигуры в технике «Оригами»?

Результаты анкетирования

Что такое «оригами»?

Развитию каких качеств человека способствует техника «Оригами»?

На каких уроках можно использовать технику «Оригами»?

Вы умеете создавать фигуры в технике «Оригами»?

Приложение 8

Мастер-класс «Оригами – это увлекательно»

Приложение 9

Изучение литературы в Туймазинской центральной библиотеке

Приложение 10

Организация рабочего места

Для работы нам понадобится: бумага разноцветная ксероксная, ножницы.

Рабочее место должно быть хорошо освещено, свет должен падать на рабочую зону слева от работающего.

Во время работы должна быть правильная посадка.

Необходимые мне предметы должны находиться в удобном для меня расположении.

Уважаемые ребята! Не забываем о технике безопасности!1. Работай хорошо отрегулированными и заточенными ножницами!2. Ножницы должны иметь тупые, скругленные концы.3. Ножницы клади кольцами к себе.4. Следи за движением лезвий во время резания,5. Не оставляй ножницы раскрытыми. 6. Передавай ножницы кольцами вперед.7. Не играй ножницами, не подноси к лицу.8. Используй ножницы по назначению

Выбор материалов и инструментов.

Умение правильно выбрать бумагу, подобрать цвета и грамотно сочетать их в поделке позволяет создавать оригинальные вещи, которые станут украшением интерьера или приятным подарком близким людям. При этом размеры поделок могут быть самыми разными: от миниатюрных фигурок до огромных бумажных статуй.

Модульное оригами требует большого расхода бумаги. Требования к бумаге: она должна хорошо держать форму, не «ломаться» при сгибании, должна быть достаточно плотной и не очень гладкой. В своей работе я использую бумагу для принтера.

Бумагу для модулей необходимо разрезать на квадраты или прямоугольники. Это можно делать ножницами, но тогда либо будет страдать качество (если работать с несколькими листами одновременно), либо процесс займет слишком много времени. Поэтому удобно пользоваться линейкой и канцелярским ножом.

В сборке модели главное не сбиться, иначе придется делать все заново.

Буклет для одноклассников с описанием последовательности выполнения работы

«Сердечко в технике модульное оригами»

Приложение 11

Мои работы

Приложение 12

Беседа с учителем математики

Просмотров работы: 3522

Исследовательская работа по математике на тему "Оригами и математика"

Муниципальное бюджетное образовательное учреждение

средняя общеобразовательная школа№4

городского округа г. Выкса Нижегородской области

Оригами и математика

Физико-математическое отделение

Секция математическая

Работу выполнила:

ученица 5 класса

Лапина Анастасия Алексеевна

11 лет

Научный руководитель:

учитель математики

МБОУ СОШ №4

Огольцова Александра Александровна

г. Выкса

2015г

Оглавление

  • Введение ……………………………………………………………..3 - 4

  • Глава 1. Обзор литературы ………………………………………..5

  • Глава 2. Искусство оригами ……………………………………...6

2.1. Из истории оригами………………………………………………6 - 8

2.2. Азбука оригами…………………………………………………...8

2.3. Базовые формы оригами………………………………………....9

2.4. Виды и техника оригами………………………………………...9 - 10

3.1. Поисковая работа………………………………………………...11

3.2. Эксперимент……………………………………………………..11 - 15

3.3. Некоторые примеры связи математики и оригами……………15 - 17

  • Заключение………………………………………………………….18

  • Список использованной литературы…………………………….19

  • Приложение……………………………………………………….....20 - 28

Аннотация

Оригами - удивительное искусство бумажной пластики. Сегодня множество людей во всем мире увлекаются им. Бумажные фигурки делают дети и взрослые, художники и конструкторы. Его даже преподают в школах, о нем пишут книги и выпускают журналы с интересными статьями и описанием различных моделей. Я заметила, что, складывая фигурки оригами, сталкиваюсь с математическими понятиями. Мне стало интересно, как связаны таинственное искусство складывания фигурок из бумаги и давно интересующая меня математика.

Цель: установить взаимосвязь искусства оригами и науки математики.

Задачи:

- изучить источники информации по предмету исследования;

- изучить историю оригами, основные этапы его развития ;

- рассмотреть базовые формы и приемы оригами;

- исследовать связь математики и оригами;

- заинтересовать окружающих таинственным искусством складывания

фигурок.

Основные результаты:

- проводя исследования по данной теме, я изучила азбуку и базовые формы оригами, смогла понять, как связаны математика и оригами, нашла аргументы и факты за выдвинутую гипотезу.

Практическая значимость:

- моя работа показывает возможность использования искусства оригами на уроках математики.

Введение.

Очень приятно получать подарки. А еще приятнее их дарить. Но праздников очень много, людей, которым хочется сделать подарок, – еще больше. И каждый из нас хоть один раз в жизни сталкивался с проблемой – «Что подарить?»

А ведь каждому из нас хочется получить в подарок что-то уникальное, а еще лучше, сделанное руками близкого человека. Ведь такой сувенир всегда будет радовать глаз и пробуждать море теплых воспоминаний, потому что сделан он с душой, любовью и мыслями о Вас.

Один из самых доступных любому человеку материалов – это бумага, и рукоделие из нее не только получило широкое распространение, но и имеет достаточно много разновидностей. Для создания некоторых бумажных поделок достаточно иметь подходящую бумагу, для других могут понадобиться ножницы, клей и некоторые дополнительные инструменты и элементы.

Я заметила, что, складывая фигурки оригами, сталкиваюсь с математическими понятиями. Мне стало интересно, как связаны таинственное искусство складывания фигурок из бумаги оригами и давно интересующая меня математика.

Я считаю, что тема моей работы современна и актуальна, так как в настоящее время, несмотря на развитие науки и техники, способность к творчеству остается отличительной чертой человека, благодаря которой он может жить в единстве с природой, все созданное творцом всегда было и будет неповторимым, оригинальным и ценным.

Гипотеза: Математика - это одна из сторон оригами и наоборот, оригами является одной из направляющих математики.

Цель: установить взаимосвязь искусства оригами и науки математики.

Задачи:

- изучить литературу и другие источники информации по данному

вопросу;

- изучить историю оригами, основные этапы развития оригами;

- рассмотреть базовые формы и приемы оригами;

- исследовать связь математики и оригами;

- провести мастер-класс своим одноклассникам по изготовлению моделей

оригами (оригинальный подарок своими руками).

Над своим исследованием я работала два месяца. Посещала школьную библиотеку, искала информацию, используя ресурсы Интернет-сайтов, а также книги из домашней библиотеки.

Глава 1. Обзор литературы

О понятии оригами я узнала в книге Н. Г. Юрина. По книге “Я познаю мир” [1]

    Изучив книгу Ильиной Н.К. «Оригами. Необычные модели для развития фантазии» [2], я познакомилась с азбукой оригами, основными базовыми формами, основными приемами создания оригами, а также я узнала много нового из истории данного искусства, прочитала легенды об оригами.

На сайтах интернета [8] я познакомилась с техникой и видами оригами, узнала о бумаге, которая предназначена для складывания оригами, узнала о первых фигурках оригами, где используют оригами.

Во всех, изученных мной книгах[2], [3], [4], [5] , доступно рассказывается, как сделать разнообразные модели из бумаги, представлены мастерски выполненные схемы складывания.

В журналах   «Математика в школе»№9, 2011 [6], «Математика. Все для учителя!» №11(35), 2013 [7] я посмотрела, как искусство оригами помогает организовать работу учащихся на занятиях по математике при изучении геометрических понятий и решении задач на основе активного использования моделей из бумаги.

Глава 2. Искусство оригами

2.1. Из истории оригами

Родина оригами - Япония. Искусство складывания бумаги зародилось в Стране Восходящего солнца много веков назад. Фактически, история оригами началась в Китае, когда китайскому императору доложили о замечательном открытии - была создана бумага.

Первые попытки сложить лист начались в японских храмах и монастырях. В далекой древности оригами имело религиозное предназначение. Ими украшали статую богини милосердия, чтобы задобрить ее и попросить покровительства.

Появление первых фигурок относится к средним векам. Умение складывать из бумаги считалось одним из признаков хорошего образования и изысканных манер. В те времена бумага было материалом редким и дорогим. Фигурки оригами служили гербом и печатью в некоторых знатных семьях.

Самураи делали амулеты оригами из бумаги с добавлением полосок акульей шкуры или волокон сушеного мяса. Такие амулеты были призваны охранять самурая и приносить ему победу.

Позже искусством складывания из бумаги стали заниматься, в основном, женщины и дети. Оно стало частью традиций и обычаев, украшением японского быта, карнавальных шествий, народных праздников. Кроме того, очень популярно было искусство складывания писем. Особым образом свернутые послания похожи были на головоломку. Развернуть их мог только посвященный.

До конца XIX века для обозначения искусства складывания употреблялось слово «ориката». Лишь в 1880 году возникает термин «оригами», ставший уже привычным. Слово это состоит из двух понятий: «ори», что означает «складываю» и «ками» - «бумага».

Во второй половине XIX века оригами перешло границы Японии. В странах Европы начали знакомиться с классическими фигурками, выполненными в технике оригами.

Бурное развитие оригами началось только после второй мировой войны, главным образом, благодаря усилиям всемирно известного мастера-оригамиста Акиры Йошизавы. Именно он изобрел единую универсальную систему знаков, с помощью которых можно записать схему складывания любой фигурки.

Новое возрождение оригами так же тесно связано со страшной трагедией, произошедшей 6 августа 1945 года, когда "люди" решили испытать атомную бомбу на человеке, подписав смертный приговор городу Хиросима.

Среди тех, кто не сгорел заживо и был обречен на медленную и мучительную смерть была Садако Сасаки. Именно тогда среди детей, обреченных на гибель, возникла легенда о свободной птице, символе жизни - журавлике. Дети искренне верили, что, смастерив из бумаги 1000 журавликов, они исцелятся и останутся живы.

В память о жертвах атомной бомбардировки в Хиросиме заложили парк Мира. В мае 1958 года там был открыт монумент, посвященный погибшим детям.

Движение "1000 журавликов" возродило интерес к оригами. По всему миру стали издаваться красочные книги, буклеты, журналы, посвященные этому искусству.

Каждая страна приняла оригами по-своему, в соответствии со своими культурой и традициями.

Складывая оригами, люди часто задаются вопросом: «А почему квадрат? И почему нельзя резать?»

На востоке к квадрату всегда относились с особым почтением. В Древнем Китае он символизировал землю. Считалось, что земля имеет форму квадрата, над которой нависает купол неба. Форму квадрата имеют и все, родившиеся на востоке игры: шахматы, танграм. Квадрат – это наименьший размер комнаты в японском доме – два татами. Все иероглифы можно вписать в квадрат. Исследуя возможности оригами, современные мастера доказали, что ни одна форма не имеет такие возможности для складывания, как квадрат.

Что же касается запрета разрезать, то он прямо связан с убеждением, что все во Вселенной связано со всем. Все формы перетекают одна в другую. Как в фигурке оригами, квадрат, видоизменяясь, дает жизнь новой форме. Разрез нарушает единое целое.

2.2. Азбука оригами.

В международной литературе по оригами давно сложился определенный набор условных знаков, необходимых для того, чтобы зарисовать схему складывания даже самого сложного изделия. Условные знаки играют роль своеобразных "нот", следуя которым можно воспроизвести любую работу. Помимо знаков, существует небольшой набор приемов, которые встречаются достаточно часто. Обычно они даются в книгах без комментариев. Считается, что любой новичок умеет выполнять их на практике. Международные условные знаки вместе с набором несложных приемов и составляют своеобразную "азбуку" оригами, с которой должен быть знаком любой складыватель. Большая часть условных знаков была введена в практику еще в середине XX века известным японским мастером Акирой Йошизавой. В последние десятилетия к этим знакам добавилось несколько новых. К введению любых дополнительных обозначений следует относиться очень осторожно, и уж, конечно, совсем не стоит "изобретать велосипед" и пытаться записывать схемы складывания как-то по-своему. Все обозначения в оригами можно разделить на линии, стрелки и знаки. (См.Приложение1.)

2.3. Базовые формы оригами.

Многие фигурки оригами на начальном этапе складываются одинаково, то есть имеют одну основу - базовую форму. База – это самая простая уже сложенная форма, из которой со временем могут появиться множество различных фигурок.

Сегодня в мире существует целых 11 базовых форм (Приложение 2).

  1. Простые базовые формы: треугольник, книга, дверь, воздушный змей;

  2. Средние базовые формы: блин, рыба, двойной треугольник, двойной квадрат;

  3. Сложные базовые формы: птица, катамаран, лягушка.

Часто в книгах об оригами даже не приводятся схемы базовых форм оригами, подразумевается, что мастер оригами уже с ними знаком .

2.4. Виды и техника оригами

Модульное оригами

Одной из популярных разновидностей оригами является модульное оригами, в котором целая фигура собирается из многих одинаковых частей (модулей). Каждый модуль складывается по правилам классического оригами из одного листа бумаги, а затем модули соединяются путём вкладывания их друг в друга, появляющаяся при этом сила трения не даёт конструкции распасться. Одним из наиболее часто встречающихся объектов модульного оригами является кусудама, объёмное тело шарообразной формы.

Простое оригами

Простое оригами — стиль оригами, придуманный британским оригамистом Джоном Смитом, и который ограничен использованием только складок горой и долиной. Целью оригами является облегчение занятий неопытным оригамистам, а также людям с ограниченными двигательными навыками. Данное выше ограничение означает невозможность многих (но не всех) сложных приёмов, привычных для обычного оригами, что вынуждает к разработке новых методов, дающих сходные эффекты.

Складывание по развёртке

Развёртка (англ. creasepattern; паттерн складок) — один из видов диаграмм оригами, представляющий собой чертёж, на котором изображены все складки готовой модели. Складывание по развёртке сложнее складывания по традиционной схеме, однако, данный метод даёт не просто информацию, как сложить модель, но и как она была придумана — дело в том, что развёртки используются при разработке новых моделей оригами. Последнее также делает очевидным факт отсутствия для некоторых моделей иных диаграмм, кроме развёртки.

Мокрое складывание

Мокрое складывание — техника складывания, разработанная Акирой Йошизавой и использующая смоченную водой бумагу для придания фигуркам плавности линий, выразительности, а также жесткости. Особенно актуален данный метод для таких негеометрических объектов, как фигурки животных и цветов — в этом случае они выглядят намного естественней и ближе к оригиналу. Не всякая бумага подходит для мокрого складывания, а лишь та, в которую при производстве добавляют водорастворимый клей для скрепления волокон. Как правило, данным свойством обладают плотные сорта бумаги.

Глава 3. Оригами – это математика!

Как связано искусство оригами и точная наука математика? Этот вопрос я решила изучить.

Я проанализировала базовые формы оригами и заметила, что уже при первом знакомстве с этим искусством мы узнаем о таких простых формах, как прямоугольник и треугольник. Когда складываем простую форму, то знакомимся с квадратом, согнув углы которого к центру можно увидеть, что квадрат может состоять из четырёх одинаковых треугольников. Складывая форму «Воздушный змей», знакомимся с ромбом. Азбука оригами включает в себя такие геометрические понятия, как точка и линия.

Таким образом, оригами и математика (а именно геометрия) неразрывно связаны. При изготовлении различных моделей оригами мы используем множество понятий из математики (такие как точка, линия, квадрат, прямоугольник, треугольник).

3.1. Поисковая работа.

В рамках поисковой работы я сначала рассмотрела некоторые базовые модели оригами и выяснила их связь с математическими понятиями.

(См. Приложение 3).

Затем я решила взять несколько стандартных схем оригами, и выяснить какие геометрические фигуры используются в них.

Для этого необходимо снова рассмотреть основы оригами.

(См. Приложение 1).

И сейчас я могу сделать вывод, что при работе с оригами следует знать следующие фигуры:

  1. Прямая, квадрат, треугольник, угол, ромб.

3.2.Эксперимент.

Проведем эксперимент по сложению оригами. И сразу выпишем, знания каких геометрических фигур мне были нужны.

Схема 1. «Собака»

Геометрические фигуры: квадрат, треугольник, прямая .

Схема 2. «Ваза»

Возьмите квадрат двусторонней бумаги (1).

Теперь согните лист по диагонали и разогните. (2)

Повторите то же действие с другой диагональю. (3)

Следующий шаг – согните и разогните лист по горизонтали, как показано на фото (4) и (5).

По намеченным линиям сложите лист в ромб вот так: (6), (7).

Получившийся ромб хорошо прогладьте. (8)

Правый угол загните к центру. (9)

Левый угол загните к центру. (10)

Переверните заготовку и повторите то же самое с оставшимися двумя углами. (11)

Верхний левый угол заготовки загните к центру (12), разогните и далее опустите центральный угол к середине как на фото (13).

Переверните клапан как страницу и продолжайте по аналогии (12 и 13 фото), пока перед вами не окажется последний правый угол. Его согните к центру заготовки, как на 12 фото, только зеркально, разогните и вправьте по намеченным линиям этот угол вовнутрь (17 и 18).

Вот что у нас должно получиться. (19)

Нижний уголок нашей будущей оригами - вазы загните и разогните, чтобы после того, как мы развернем заготовку (22) у нас получилось сделать такое устойчивое дно (21).

Если на каком-то этапе вы получаете не совсем то, что на фото – не переживайте. Разверните заготовку аккуратно и проследите, на каком шаге вы ошиблись. Самое главное – верно сделать изгибы. По ним уже вы сможете и переделать оригами - вазу.

И здесь мы наблюдаем те же геометрические фигуры: квадрат, диагональ, треугольник, прямоугольник, прямую, угол.

3.3. Некоторые примеры связи математики и оригами.

Согласно классическому оригами, объектом складывания является
неразмеченный квадратный лист бумаги без разрезов.

С точки зрения математики, целью оригамиста является точное определение местоположения одной или более точек листа, задающих складки, необходимые для формирования окончательного объекта. Процесс складывания подразумевает выполнение последовательности точно определенных действий по следующим правилам:

  • Линия определяется либо краем листа, либо линией сгиба бумаги.

  • Точки определяются пересечениями линий.

  • Все складки определяются единственным образом путем совмещения
    различных элементов листа — линий или точек.

  • Сгиб формируется единственной складкой, причем в результате
    складывания фигура остается плоской.

Последний пункт сильно ограничивает возможности складывания, разрешая только одну складку за раз. На практике даже простейшие модели оригами подразумевают создание нескольких складок за одно действие.

В процессе складывания фигур оригами мы знакомимся с различными геометрическими фигурами: треугольником, квадратом, прямоугольником и так далее. Учимся легко ориентироваться в пространстве и на листе бумаги, делить целое на части, находить вертикаль, горизонталь, диагональ, узнаём многое другое, что относится к геометрии и математике.

Американский педагог Ф. Фребель уже в середине XIX века заметил геометрическую особенность оригами и ввел его как учебный предмет в школе.

Например, основы геометрии он предлагал изучать не с помощью циркуля, линейки и некоторых понятий, а на примере фигур складывающейся бумаги. Он активно внедрял оригами в педагогический процесс. К сожалению, тогда Фребель не владел такой, как в настоящее время, техникой складывания фигур.

Идеи Фребеля и сегодня очень интересны. Поэтому не удивительно , что в наши дни оригами продолжает играть определённую роль в развитии и воспитании. Оригами способствует активности, как левого, так и правого полушарий мозга, так как требует одновременного контроля за движениями обеих рук.

Идеи Фребеля и сегодня очень интересны. Не удивительно поэтому, что в наши дни оригами продолжает играть определённую роль в развитии и воспитании. Оригами способствует активности как левого, так и правого полушарий мозга, так как требует одновременного контроля за движениями обеих рук.

В конце XX века возник новый термин «оригаметрия», обозначающий область геометрии, в которой задачи решаются только методом складывания.

Одна из таких задач это деление исходного квадрата без предварительных чертежей и измерений. Как это сделать, не прибегая к карандашу? Например, как разделить квадратный лист бумаги на три равные части? (См. Приложение 4)

Заключение.

Как наглядное средство лист бумаги применяется в обучении математике с давних пор. Но на уроках математики важно не то, какую фигурку вы сложили из бумаги, а наоборот. Разверните любую бумажную поделку. Линии сгиба образовали треугольники, квадраты, четырехугольники…К тому же, разворачивая поделку, можно наблюдать преобразование пространственной фигуры в плоский лист бумаги. А значит, упражнения с листом бумаги позволяют знакомиться с различными геометрическими фигурами и изучать их простейшие свойства.

Исходя из всего вышеизложенного мною, я могу сделать выводы:

  • искусство оригами тесно связано с математикой и помогает ее изучать;

  • данная тема представляет большие возможности для проявления исследовательских и творческих умений при решении задач.

Гипотеза, которую я ставила в начале работы «Математика - это одна из сторон оригами и наоборот, оригами является одной из направляющих математики», подтвердилась.

Мне было очень интересно работать над данной темой. В дальнейшем я продолжу свою работу, так как это мне поможет находить новые способы решения некоторых задач, а также при изучении геометрии в 7 классе.

Некоторые ребята из моего класса заинтересовались оригами, и я провела для них мастер – класс. Мы вместе создали подарок нашим мамам ко дню 8 марта. (См. Приложение 5)

Список литературы.

1. Выгонов В.В. Трехмерное оригами.- М.: Издательский Дом МСП, 2007

2.     Ильина Н.К. Оригами. Необычные модели для развития фантазии.-М.:РИПОЛ классик, 2012

3. Сержантова Т.Б.Оригами. Лучшие модели / Т.Б. Сержантова . – М.:Айрис-пресс, 2010

4. Эм Г.Э. Путешествие в страну Оригами. Пособие для учителей и родител

5.     Юрина Н. Г. . По книге “Я познаю мир”, 2004

6.   //Математика в школе//№9, 2011

7.  //Математика. Все для учителя! //№11(35), 2013

8. Интернет-ресурсы:

http:// www.origami – do.ru

http:// www.origami .ru

Приложение 1

Основные условные обозначения

Приложение 2

Простые базовые формы

Книга

Треугольник

Дверь

Воздушный

змей

Средние базовые формы

Блин

Рыба

Двойной

треугольник

Двойной

квадрат

Сложные базовые формы

Птица

Катамаран

Лягушка

Приложение 3

Связь базовых моделей оригами с математическими понятиями.

Базовая модель

Математические понятия

« Книга»

Линия, квадрат, прямоугольник, деление листа на две равные части, прямой угол.

«Треугольник»

Квадрат , диагональ , треугольник, равные углы.

«Блин»

Квадрат, диагональ, угол, центр, треугольник.

«Дверь»

Квадрат, деление листа на две и четыре равные части.

« Дом»

Квадрат, деление листа на две, четыре, восемь равных частей, треугольник.

Приложение 4

Способ деления квадрата на три одинаковые части

Приложение 5

"Оригами и математика" (2 класс)

Оригами - удивительное искусство бумажной пластики. Оригами, это японское искусство складывания бумаги, образовано от японского oru (складывать) и kami (бумага). Сегодня множество людей во всем мире увлекаются искусством «оригами». Бумажные фигурки делают дети и взрослые, художники и конструкторы.

Многие считают, что оригами – это забава, с помощью которой люди создают различные фигуры, но очень многое в оригами связано с математикой. Оригами связано с геометрией: предметы вокруг нас имеют форму, похожую на геометрические фигуры. Альбомный лист имеет форму прямоугольника. Если поставить круглый стакан на лист бумаги и обвести его карандашом, получится линия, изображающая окружность.

В наше время оригами с математической точностью шагает по планете семимильными шагами. Ученные придумали использовать приёмы оригами в космосе, а именно Миура-ори — схема жесткого складывания, которая использовалась для развертывания больших установок солнечных батарей на космических спутниках.


Научно-исследовательская работа "Оригами и математика"

ОГЛАВЛЕНИЕ

Введение …………………………………………………………………. 3-4

Глава 1. Понятие об оригами.

    1. Изучение истории оригами ……………………………………….5-6

    2. Виды оригами ………………………………………………………..7

Глава 2. Азбука оригами…………………………………………………...8

2.1. Применение оригами в математике…………………………………..9

2.2. Оригаметрия в математике…………………………………………...10

2.3. Практическая работа ……………………………………………...11-13

Заключение…………………………………………………………………14

Использованная литература ………………………………………………15

Приложения

Введение.

Оригами – удивительное искусство бумажной пластики. Сегодня множество людей во всем мире увлекаются искусством «оригами». Бумажные фигурки делают и взрослые, и дети, художники и конструкторы. Я заметил, что, складывая фигурки оригами, сталкиваюсь с математическими понятиями. Мне стало интересно, как связаны таинственное искусство складывания фигурок из бумаги оригами и давно интересующая меня математика.

Тема моей работы «Математика и оригами».

Объектом исследования является оригами как вид творчества.

Предмет исследования: оригами в математике

Цель работы: расширить знаний об истории развития оригами, выяснить, каким образом математика проявляется в оригами.

Моя гипотеза заключается в том, что искусство оригами тесно связано с математикой и может стать хорошей основой для ее изучения.

Согласно поставленной цели и гипотезы, задачи моей работы:

  1. Изучить понятие, историю происхождения, виды оригами;

  2. Исследовать связь математики и оригами

  3. Научить одноклассников создавать различные фигуры в технике оригами, заинтересовать их данной работой и предметом «Математика».

Актуальность исследования: в последнее время ребята все с большей неохотой относятся к учебе, и в частности к математике. Чтобы привлечь внимание учащихся к математике я решил в своей работе показать, что изучение математики может быть интересным.

В работе были использованы такие методы исследования, как анализ, апробирование, сравнение.

Глава 1. Понятие об оригами.

    1. Изучение истории оригами

История происхождения оригами уходит своими корнями в глубокое прошлое. Всем известно, что бумагу изобрели в Китае, а в Японию она была завезена на шесть столетий позже. Легенда гласит, что чиновник Цай Лунь официально доложил императору о создании технологии производства бумаги. Многие годы создание белого листа хранилось в строжайшей тайне. В VII веке странствующий монах Дан-Хо пробрался в Японию и обучил монахов изготовлению бумаги по китайской технологии. В Стране Восходящего Солнца быстро наладили производство бумаги, которое во многом обогнало Китай.

Бумажное складывание – оригами стало известно именно в японском варианте.

Почему же эта техника не получила в Китае такого же мощного развития, как в Японии? Японцы использовали бумагу не только для письма, производства ширм, зонтиков, окон и даже одежды, но и для наглядной демонстрации некоторых мировоззренческих идей философии дзен-буддизма. Буддисты были первыми, кто  обратили свое внимание на все, что непрочно, на миг.

Самые первые листочки бумаги, сложенные в фигурки, появились в монастырях. В японском языке «бог» и «бумага» звучат одинаково, хотя и обозначаются разными иероглифами. Фигурки из бумаги имели символическое значение. Ими украшали храмы, они участвовали в религиозных церемониях, их помещали на жертвенный костер. История оригами сохранила первые бумажные фигурки – коробочки «санбо», куда японцы складывали кусочки овощей и рыбы для жертвоприношений. Это был просто лист бумаги, отмеченный именем бога и стоящий по тем временам не малых денег.

В средние века, когда объем производства бумаги позволил снизить цену на нее, увлечение бумажными фигурками проникло в дворянскую среду. Появилось «искусство самураев». Тогда же возникло и искусство сворачивания тайных писем. Применяя свое умение, самураи так складывали записки, что только посвященный мог развернуть их. В XVI – XVII веках оригами превратилось в популярное времяпрепровождение. В те времена умение богатого дворянина развлечь свою даму на балу складыванием фигурок из бумажного листа считалось признаком хорошего воспитания. Знатные семьи изображали фигурки оригами на своих гербах и печатях. Бумага перестала быть предметом роскоши, и оригами начало распространяться  среди простого народа. Именно тогда, триста – четыреста лет назад, был изобретен ряд новых фигурок, которые позже стали классическими. Среди них и журавлик – традиционный японский символ счастья и долголетия.

Новый этап в развитии оригами начался после второй мировой войны и связан с именем знаменитого японского мастера Йошизава Акира. С помощью изобретенных им несложных условных знаков процесс складывания любого изделия оказалось возможным представить в виде серии рисунков-чертежей. Акира изобрел сотни новых, ранее неизвестных, фигурок. Он доказал, что искусство складывания может быть авторским, и способствовал его широчайшему распространению. В течение нескольких лет Японское министерство иностранных дел отправляло его в многочисленные поездки по странам Европы, потому что развитое и поддержанное им традиционное японское искусство стало международным средством мира и дружбы без слов.

    1. . Виды оригами

Оригами могут быть плоскими и объемными. (Приложение 1)
Простое оригами
Плоские оригами называют также односторонними оригами: предмет определяется только с одной стороны. Обычно такие изделия используются для аппликации. В этом случае используется клей.
Вывод: по схеме видно, какие геометрические фигуры и понятия мы будем применять: ромб, квадрат, диагонали, треугольник
Модульное оригами
Это вид объемного оригами. Готовятся одинаковые модули, которые затем вкладываются один в один. Клей не используется.

Вывод: По схеме видно, какие геометрические фигуры и понятия мы будем применять: прямоугольник, равнобедренный треугольник, высота, биссектриса, параллельные прямые, сгибание под углом 450.
Киригами
Вид оригами, в котором допускается использование ножниц и разрезание бумаги в процессе изготовления модели. Это основное отличие киригами от других техник складывания бумаги, что подчёркнуто в названии: (киру) — резать, (ками) — бумага. 
Вывод: по схеме видно, какие геометрические фигуры и понятия мы будем применять: квадрат, равнобедренный треугольник, высота, биссектриса, медиана, вертикальные линии.

Кусудами
Кусудами представляют собой красочные многомодульные шары. («Кусудама» и означает в переводе "лечебная трава").
Вывод: по схеме видно, какие геометрические фигуры и понятия мы будем применять: квадрат, треугольник, вертикальные линии, параллельные прямые, высота, биссектриса.

Глава 2. Азбука оригами.

В международной литературе по оригами давно сложился определенный набор условных знаков, необходимых для того, чтобы зарисовать схему складывания даже самого сложного изделия. Условные знаки играют роль своеобразных "нот", следуя которым можно воспроизвести любую работу. Каждый оригамист должен знать эти знаки и уметь пользоваться ими для записей. Помимо знаков, существует небольшой набор приемов, которые встречаются достаточно часто. Обычно они даются в книгах без комментариев. Считается, что любой новичок умеет выполнять их на практике. Международные условные знаки вместе с набором несложных приемов и составляют своеобразную "азбуку" оригами, с которой должен быть знаком любой складыватель. Большая часть условных знаков была введена в практику еще в середине XX века известным японским мастером Акирой Йошизавой. В последние десятилетия к этим знакам добавилось несколько новых. К введению любых дополнительных обозначений следует относиться очень осторожно, и уж, конечно, совсем не стоит "изобретать велосипед" и пытаться записывать схемы складывания как-то по-своему. Все обозначения в оригами можно разделить на линии, стрелки и знаки. (Приложение 2)

2.1. Применение оригами в математике

Чаще всего люди воспринимают оригами просто как способ изготовления бумажных игрушек и украшений интерьера, и мало кто задумывается о том, что это древнее искусство имеет тесную связь с математикой. Развернув фигурку оригами и посмотрев на складки, я увидел множество многоугольников, соединенных друг с другом. В сложенном виде оригами представляет собой многогранник, фигуру с множеством плоских поверхностей. Складывание самой простой фигуры оригами включает в себя решение простейших геометрических задач на построение, таких, как построение перпендикуляра к данной прямой, построение биссектрисы угла и т.д. Различные построения и фигуры оригами складываются, как правило, из квадратного листа бумаги. Таким образом, когда мы производим простейшее действие с листом бумаги, например, складываем его по вертикали или диагонали, мы уже решаем задачи на построение: строим перпендикуляр к прямой или биссектрису угла.

Предметы вокруг нас имеют форму, похожую на геометрические фигуры. Альбомный лист имеет форму прямоугольника. Если поставить круглый стакан на лист бумаги и обвести его карандашом, получится линия, изображающая окружность. Кольцо, обруч напоминают своей формой окружность, а арена цирка, дно стакана или тарелка имеют форму круга. Апельсин, футбольный мяч, арбуз похожи на шар. Шестигранный карандаш, египетские пирамиды – это тоже геометрические фигуры. Геометрия – это наука о свойствах геометрических фигур: треугольника, квадрата, круга, пирамиды, сферы и др.

В процессе складывания фигур оригами мы учимся легко ориентироваться в пространстве и на листе бумаги, делить целое на части, находить вертикаль, горизонталь, диагональ, узнаём многое другое, что относится к геометрии и математике. Американский педагог Ф. Фребель уже в середине XIX века заметил геометрическую особенность оригами и ввел его как учебный предмет в школе.

2.2. Оригаметрия в математике.

Возможности перегибания листа бумаги велики, что обеспечивает решение большого разнообразия задач.

В конце XX века возник новый термин «оригаметрия», обозначающий область геометрии, в которой задачи решаются только методом складывания.

  Одна из таких задач, это деление исходного квадрата без предварительных чертежей и измерений. Как это сделать, не прибегая к карандашу?

Оригами обладает мощным потенциалом в решении планиметрических задач на построение. Вот некоторые из них, решаемые методами оригами:

1) построение биссектрисы угла;

2) построение высоты треугольника;

3) построение медианы.

При решении задач с помощью методов оригами роль прямых играют края листа и линии сгибов, образующиеся при его перегибании, а роль точек - вершины углов листа и точки пересечения линий сгибов друг с другом или с краями листов.

Любая оригамская задача состоит:

1. Из постановки задачи.

2. Из оригамского решения, проверки или способа построения.

3. Из математического обоснования, то есть доказательства того, что в результате действительно получается фигура с требуемыми свойствами.

Для примера решим несколько несложных задач. (Приложение 3)

Задача №1. Методом оригами разделить один из углов квадрата на три равных угла.

Задача №2. Построить правильный треугольник. Оригамское решение.

Задача №3. Построить правильный пятиугольник Оригамское решение.

Задача №4. Построить правильный шестиугольник. Оригамское решение.

Мы получили некоторые правильные многоугольники, точность которых можно проверить с помощью чертежных инструментов либо применить математическое обоснование.

Правильные многоугольники широко применяются в модульном оригами, например, для построения некоторых многогранников: додекаэдра, икосаэдра, тетраэдра, гексаэдра и т.д Для создания оригамских фигур, различные кусудамы.

2.3. Практическая работа.

В ходе своего исследования я заметил, что искусство оригами связано не только с геометрией, но и непосредственно со следующими математическими величинами:

  1. Длина.

Для того, чтобы изготовить изделие в технике оригами, квадрат или прямоугольник используются как базовые формы. Для начала предлагается приготовить квадрат или прямоугольник заданных размеров, где используя линейку производятся измерения.

  1. Время.

В ходе работы над изделиями можно узнать время, затраченное на каждый вид работы. Ниже приведена таблица, в которой занесены виды работ и время, затраченное на них. Для этого я использовал часы с секундомером, с помощью которых я измерил время своей работы с точностью до секунд.

изделие

время

Журавль

5 мин 5 секунд

Танк

2 мин 38 секунд

Корабль

1 мин 17 секунд

Лягушка

4 мин 47 секунд

  1. В ходе своей работы я также решил провести такой опыт. Я предложил своим одноклассникам изготовить объемное оригами. Показал образец, объяснил ход работы. А сам фиксировал следующие показатели:

Количество

учащихся

Качество работы

Точность работы

Время работы

на «5»

4

2

2

2

на «4»

7

5

1

1

на «3»

2

2

Наблюдения показали, кто изучает математику на «отлично» справились с заданием вовремя, выполнили точно, и качество было отличным. У тех, кто занимается на «хорошо», работы были качественные, но они не уложились во времени. Кто получает «удовлетворительно», поняли задание после многократных объяснений и справились с помощью учителя.

Вывод: итак, практическая работа показала, что математика является основой оригами.

  1. Для распространения и обмена своим опытом я создал свой канал на You tube под названием «Мастерская Германа», где имею уже своих подписчиков. На этом канале я рассказываю о своем творчестве.

Заключение

В ходе исследовательской работы я убедился, что искусство оригами тесно связано с математикой. Наша гипотеза подтвердилась: кто хорошо знает математику, тот успешно справляется с изготовлением оригами. Моя цель достигнута, но я продолжу свою работу над данной темой, изучу более сложные виды оригами, распространю на своем канале работы, и буду перенимать опыт у своих сверстников и оригамистов. Я уверен, что мое увлечение оригами поможет мне успешно осваивать науку «Математика» и развивать мои математические способности.

Использованная литература

  1. Колягин Ю.М., Тарасова О.В. Наглядная геометрия и ее роль, и место, история возникновения. - Журнал «Начальная школа» №4, 2000г. 

  2. С. Н. Белим Задачи по геометрии, решаемые методами оригами. – М.: изд. «Аким», 1998г., 66с.

  3. Интернет - ресурсы

Оригами -это математика исследовательская работа

Муниципальное казённое общеобразовательное учреждение Верх-Ненинская средняя общеобразовательная школа

Проект на тему:

«Оригами - это математика!»

Работу выполнила: Ученица 8 класса

Ярковая Таисия.

Руководитель: учитель математики

Ярковая М.А.

2015г.

Содержание.

Введение……………………………………………………………………3

1.История оригами…………………………………………………………4

2.Оригами-это математика………………………………………………...6

3.Оригаметрия………………………………………………………………8

4.Применение оригами…………………………………………………….14

Заключение………………………………………………………………....16

Использованная литература………………………………………….........17

Приложения………………………………………………………………...18

Введение.

Многие удивляются, услышав слово «оригами». «А что это такое?» — спрашивают они. Между тем каждый человек наверняка хоть раз в жизни создавал самое простенькое изделие из квадратного листа бумаги — это кораблик или самолетик. А в те времена, когда в магазинах не было такого выбора соломенных шляп и панам, люди летом нередко сооружали себе «пилотку» из газеты. И бумажные кораблики, и пилотка сделаны по принципу «оригами».

Цель:

Изучить происхождение оригами и связь этого искусства с математикой.

Задачи:

1. Изучить историю развития оригами.

2. Проанализировать связь оригами и математики на примере основных элементов азбуки оригами, доказательств теорем, решения математических задач.

3. Спрогнозировать развитие оригами в будущем

Оригами - удивительное искусство бумажной пластики. Оригами это японское искусство складывания бумаги, образовано от японского oru (складывать) и kami (бумага). Сегодня множество людей во всем мире увлекаются искусством «оригами». Бумажные фигурки делают дети и взрослые, художники и конструкторы. Его даже преподают в школах, о нем пишут книги и выпускают журналы с интересными статьями и описанием различных моделей. Я заметила, что, складывая фигурки оригами, сталкиваемся с математическими понятиями.

Гипотеза: Помогает ли оригами изучать математику?

Актуальность:

В последнее время ребята всё с большей неохотой относятся к учёбе, и в частности к математике. Чтобы привлечь внимание учащихся к математике я решила в своём проекте показать, что математика – это творческая наука.

Объект исследования:

Предмет исследования:

Методы исследования:

  • Поиск информации из различных источников.

  • Анализ связи программного материала с элементами техники оригами.

  • Практические работы.

Меня заинтересовало как оригами может бать связано с математикой и я решила немного об этом узнать. Сейчас я вам расскажу все что узнала об этой связи.

1. История оригами

Знакомство с оригами следует начинать с древней истории. Именно там, в Древнем Китае, в 105 году нашей эры появились первые предпосылки для возникновения оригами- искусства складывания любых фигурок из квадратного листа бумаги без использования ножниц и клея.

Как свидетельствует история, в том знаменательном году чиновник Цай Лунь сделал официальный доклад императору о том, что создана технология производства бумаги. Многие десятилетия под страхом смертной казни китайцы хранили тайну создания белого листа. Но со временем, когда монахи Китая начали свои путешествия в Японию, вместе с ними стали путешествовать, и некоторые тайны этой страны. В 7 веке странствующий буддийский монах Дан-Хо, о котором современники говорили, что он богат знаниями и умеет делать тушь и бумагу, пробирается в Японию и обучает монахов изготавливать бумагу по китайской технологии. Очень скоро в Японии сумели наладить свое массовое производство бумаги, во многом обогнав Китай.

Первые листочки бумаги, сложенные в необычные фигурки появляются сначала в монастырях. Иначе и быть не могло. Ведь в японском языке понятия "Бог" и "Бумага" звучат одинаково, хотя и обозначаются разными иероглифами. Фигурки из бумаги имели символическое значение. Они становились участниками религиозных церемоний. Украшали стены храмов. Помещались на жертвенный костер. До наших дней дошли одни из первых фигурок из бумаги - коробочки "санбо", в которые японцы вкладывали кусочки рыбы и овощей, поднося их в качестве жертвоприношений. Но это еще не было искусство. Просто лист бумаги, очень ценный и дорогой, несущий в себе имя Бога, становился неотъемлемой частью жизни японца.

В средние века, когда производство бумаги позволило снизить на нее цену, искусство складывания проникло в быт дворянства. И тогда появилось искусство самураев. В те времена считалось признаком хорошего воспитания умение богатого дворянина развлечь свою даму на балу складыванием бумажных фигурок. Тогда же возникло и искусство сворачивания тайных писем. Используя свое умение, самураи так складывали свои записки, что только посвященный мог развернуть его. Кроме того, оригамные фигурки часто использовали в свадебной церемонии, украшении домов или праздничных шествиях.

Со временем оригами (а этот термин возникает только в 1880 году) становится обязательным занятием во многих японских семьях. Мамы передавали свои знания дочкам, показывая немногие известные им фигурки.

Возрождение оригами так же тесно связано со страшной трагедией, произошедшей 6 августа 1945 года, когда «люди» решили испытать атомную бомбу на человеке, подписав смертный приговор городу Хиросима. Последствия чудовищного эксперимента были ужасны: из 420 тысяч жителей города погибло 80 тысяч. В течение 20 лет от последствий облучения умерло еще 200 тысяч человек. Среди погибших было много детей.

В память о жертвах атомной бомбардировки в Хиросиме заложили парк Мира. В мае 1958 года там был открыт монумент, посвященный погибшим детям. Памятник изображает бомбу, на вершине и по бокам которой размещены фигуры детей с поднятыми к небу руками.

Именно тогда среди детей, обреченных на гибель, возникло поверье о свободной птице, символе жизни - журавлике. Дети искренне верили, что, смастерив из бумаги 1000 журавликов, они исцелятся, останутся живы. Двенадцатилетняя девочка, чья смерть послужила поводом для сооружения памятника, успела сделать только 644 журавлика. Удивительная детская солидарность волной прокатилась по всем странам мира. Япония стала получать миллионы посылок со всех континентов с бесценным грузом - бумажными журавликами, собранными в гирлянды по 1000 штук. Эти гирлянды и сегодня украшают памятник и являются протестом войне и укором взрослым.

2. Оригами – это математика!

Многие считают, что оригами это забава, с помощью которой люди создают различные фигуры, но очень многое в оригами связано с математикой. Оригами связано с геометрией, оригами, как наука, способна изумить нас формами, о возможности существования которых, мы, может быть, и не догадывались.

Складывая базовые формы оригами, я совершенно незаметно для себя повторила некоторые геометрические понятия: квадрат, прямоугольник, треугольник, ромб. То есть некоторые базовые формы это геометрические фигуры, значит это ещё одна из точек прикосновения оригами с математикой.

Например:

Ромб:

Книжка (имеет форму прямоугольника):

Треугольник:

Блин:

Двойной квадрат:

Первые попытки использовать оригами в педагогической практике в Европе справедливо связывают с именем немецкого гуманиста Фридриха Вильгельма Августа Фребеля (1792-1852). Именно он в начале XIX века начал создавать детские сады, а затем и школу. Фребель считал Природу лучшим учителем. Он сам сначала был лесником, очень любил и ценил природу и поэтому не хотел, чтобы в школе дети занимались зубрёжкой. Фребель считал, что жизнь, движение и знание – есть три главные составляющие развития Человека. Его теория взглядов на образование и развитие личности включает в себя 4 главных компонента:

1. Свободная активность.

2. Творчество.

3. Участие в жизни общества.

4. Мышечная активность.

Например, основы геометрии он предлагал изучать не с помощью циркуля, линейки и некоторых понятий, а на примере фигур складывающейся бумаги. Он активно внедрял оригами в педагогический процесс. К сожалению тогда Фребель не владел такой, как в настоящее время, техникой складывания фигур. Но система его детских садов выжила, уже в 1892 году в Англии был основан специальный Фребелевский колледж, были они и в Америке, Японии, во многих странах Азии.

Идеи Фребеля и сегодня очень интересны. Не удивительно поэтому, что в наши дни оригами продолжает играть определённую роль в развитии и воспитании. Оригами способствует активности как левого, так и правого полушарий мозга, так как требует одновременного контроля за движениями обеих рук.

3.Оригаметрия.

В конце XX века возник новый термин «оригаметрия», обозначающий область геометрии, в которой задачи решаются только методом складывания, эта область очень молодая, и пока не существует ни соответствующих программ, ни учебников, которые давали бы подобный материал систематически. Вместе с тем многие понятия курса геометрии в школе гораздо проще и нагляднее объясняются с помощью оригаметрии.

Для построения теории используется система аксиом. Действительно, аксиомы оригаметрии существуют! Их предложил живущий в Италии японский математик Хумиани Хузита. Таких аксиом, с его точки зрения, всего шесть.

Аксиома 1. Существует единственный сгиб, проходящий через две данных точки.

Аксиома 2. Существует единственный сгиб, совмещающий две данные точки.

Аксиома 3. Существует единственный сгиб, совмещающий две данные прямые.

Аксиома 4. Существует единственный сгиб, проходящий через данную точку и перпендикулярный данной прямой.

Аксиома 5. Существует единственный сгиб, проходящий через данную точку и помещающий другую данную точку на данную прямую.

Аксиома 6. Существует единственный сгиб, помещающий каждую из двух данных точек на одну из двух данных пересекающихся прямых.

В 2002 году японский оригамистКошироХатори обнаружил сгиб, который не описан в аксиомах Х. Хузита.

Аксиома 7. Для двух данных прямых и точки существует линия сгиба. Перпендикулярная первой прямой и помещающая данную точку на вторую прямую.

Доказательство теорем с помощью оригами.

Теорема 1.Суммауглов любого треугольника равна 180 градусов.

Доказательство. Возьмем лист бумаги, имеющий форму произвольного треугольника.

1) Проведем сгиб через одну из вершин треугольника, перпендикулярно противоположной стороне (высоту треугольника).

2) Совместим вершины треугольника с точкой у основания высоты треугольника.

3)Получаем, что углы 1, 2 и 3 треугольника совпали при наложении с развернутым углом, следовательно, сумма углов равна 180 градусов.

Теорема 2. Накрест лежащие углы, образованные при пересечении двух параллельных прямых секущей, равны.

Доказательство. 1) Возьмем лист бумаги с двумя параллельными сторонами и секущей АВ. Сравним накрест лежащие

углы- углы 1 и 2.

2) Совместим вершины накрест лежащих углов- точки А и В.

3)Углы 1 и 2 совпали при наложении, следовательно, угол 1 равен углу 2. Значит, накрест лежащие углы, образованные при пересечении двух параллельных прямых секущей, равны.


Задача: Прямая, проходящая через середину биссектрисы AD треугольника АВС и перпендикулярная AD, пересекает сторону АС в точке М. Доказать, что MD //AB Решение: Возьмем лист бумаги, имеющий форму производного треугольника. Проведем биссектрису AD, согнув лист так, чтобы сторона АС совместилась со стороной АВ. Наметим середину АD, совместив точки А и D. Проведем ОМ, перпендикулярнуюAD. Согнем лист по линии MD.Для доказательства параллельности MD и АВ сравним углы 1 и 3, для этого согнем лист по AD и совместим точки А и D. Углы 1 и3 совпали, а они накрест лежащие ,следовательно, MD // AB.

Оригаметрические задачи.

Складывание оригами помогает решать задачи на темы: деление отрезка, деление угла. Таким образом, с помощью оригами решаются геометрические задачи на плоскости, значит это ещё одна из точек прикосновения оригами с математикой.

Например:

Задача №1: Деление прямого угла:

Откладывание угла в 30 или 60 градусов не представляет проблем. Для этого сначала разделим квадрат вертикальной складкой на два равных прямоугольника. Затем проведем складку, которая переносит угол квадрата на отмеченную линию.

Угол в 15 градусов теперь можно получить, деля полученные углы в 60 и 30 градусов пополам.

Задача №2: Деление листа бумаги на равные части:

Деление листа бумаги на две части не представляет сложности, поскольку реализуется просто складыванием базовой формы книжка

Следующая задача – деление стороны квадрата на четыре равные части. Для этого достаточно их поделить пополам, а затем, каждую из половинок снова пополам. Именно так происходит, когда мы складываем базовую форму дверь.

Перейдем к более сложной задаче деления квадратного листа на три части:

Эта задача уже не столь проста. Сложим угол квадрата к середине противоположной стороны. В таком случае точка пересечения другой стороны, противоположной этому углу и стороны, прилегающей к нему, делит сторону в отношении один к двум. Таким образом, с помощью только складок мы нашли треть стороны квадрата (теорема Хага).

Задача №3: Способы изготовления из квадрата правильных многоугольников:

 

Правильный пятиугольник:

Правильный восьмиугольник

 

4. Применение оригами.

Миура-ори — схема жёсткого складывания.

Для меня стало открытием, что оригами находит применение и в других науках, а также широко используется в современных технологиях. Например, в 1970 году японским астрофизиком Корио Миура на основе техники жесткого оригами была разработана схема складывания «миура-ори», которая используется сегодня для развёртывания установок солнечных батарей на космических спутниках.

Также используется для складывания бумажных документов, в частности карт местности.


В отличие от обычных методов складывания карт, складки миура-ори расположены не под прямыми углами, а слегка наклонено по отношению друг к другу

В результате, такую карту можно развернуть и свернуть одним движением, а отсутствие многослойных складок уменьшает нагрузку на бумагу (Рис.22).

Оригами в нашей жизни.


Сегодня искусство оригами переживает очередной пик популярности во всем мире, к тому же открыты новые направления оригами и области его применения. Так, математики используют основы и принципы этого искусства для решения геометрических задач, а архитекторы и строители увидели в оригамном конструировании возможности для создания многогранных структур из плоского листа. Для психологов оригами - это одно из направлений арттерапии, так как оригами в состоянии воздействовать на эмоциональную сферу человека.

А сколько идей из оригами нас окружает в жизни!

Оригами – дом

Оригами – мебель

Заключение.

Оригами и математика, словно две сестры, которые не терпят неточности и поспешности. Само оригами дает полет фантазии, а математика эту фантазию облачает в платье науки.

Японское искусство оригами очень широко вошло в нашу российскую жизнь и стало неотъемлемой частью для интеллектуального и познавательного развития. По результатам анкетирования в нашей школе как учителя, так и ученики считают, что оригами способствует в первую очередь развитию математических качеств (наблюдательность, внимание и произвольность, логическое и пространственное мышление, точность и аккуратность) человека. Это умение необходимо как на основных уроках - математика (геометрия, стереометрия), ИЗО, труд, так и на дополнительных элективных занятиях, кружках.(приложение 1)

Учащиеся 7 класса нашей школы ко Дню матери делали для мам лилии из бумаги. Я им с радость помогала. Делая цветы мальчики столкнулись с геометрическими понятиями и этим были очень удивлены. Им понравилось заниматься оригами. Ведь оригами-это не только интересное искусство, но еще и искусство помогающее изучать математику. Значит наша гипотеза верна, поэтому можно с уверенностью сказать, что математика - это одна из сторон оригами, и наоборот, оригами является одной из направляющих математики.

Использованная литература:

  1. Афонькин С.Ю., Афонькина Е.Ю. Все об оригами/Справочник. С-Пб: изд.Кристалл, М: «Оникс», 2005

  2. Белим С.Н. Задачи по геометрии, решаемые методами оригами. – М.: изд. «Аким», 1998

  3. Весновская О.В. Оригами: орнаменты, кусудамы, многогранники. -Чеб.: изд. «Руссика», 2003

  4. Дорогов Ю.И., Дорогова Е.Ю. «Оригами шаг за шагом», 2008

  5. Интернет-ресурсы: http://www.origami.kulichki.ru/modules.php?name=Pages&go=page&pid=2

http://www.origami.ru

http://fine.ap.teacup.com/foldings/

http://leit.ru/

http://ru.wikipedia.org/wiki/Оригами

Приложения.

Приложение 1.

Анкетирование.

В анкетировании приняли участие: 1 класс – 24 человек, 6 класс – 20 человек, 11 класс – 21 человек, педагоги - 23 человек.

  1. Знакомы ли вы с оригами? (да, нет)

  1. Какие фигуры оригами вы умеете делать? (перечислить)

  1. Какие качества может развивать у ребёнка оригами?

  1. С какими школьными предметами по вашему мнению связано оригами? (перечислить)

Научно-исследовательская работа "Оригами и математика" (4 класс)

Была в сети 05.11.2020 09:40

Габдрафикова Гульназ Факилевна

учитель начальных классов

Список исследовательских проектов и студенческих работ по математике


Математические исследования в классе

Введение в исследования в классе (FAQ) HTML | PDF
Постановка целей и обмен ими HTML | PDF
Влияние ученика и учителя HTML | PDF
Застрял, открепился! HTML | PDF
Развитие навыков совместной работы HTML | PDF
Оценка и использование учебных занятий HTML | PDF
Представление вашего исследования HTML | PDF
Ресурсы HTML | PDF

Навыки исследования математики

Вводные исследования и исследования Цикл HTML | PDF
Определения HTML | PDF
Постановка задач HTML | PDF
Примеры, шаблоны и Гипотезы HTML | PDF
Доказательство HTML | PDF
Получение информации HTML | PDF

.

Портал: Математика в начальной школе - Викиверситет

<Школа: Математика

Этот раздел математической школы специализируется на предоставлении средств обучения для родителей и преподавателей, как в традиционной среде, так и в условиях домашнего обучения. Параллельный проект по непосредственному обучению студентов, будь то дети или взрослые, находится в стадии реализации на этой странице Викиучебника.

Добро пожаловать в Викиверситет Отделение математики начальной школы , входящее в состав Школы математики.Лицо преподавания математики постоянно меняется. Таким образом, этот курс является попыткой идти в ногу с нынешними педагогами, которые преподают математику в начальных классах.

Хотя преподаватели должны найти этот курс полезным в изучении или повторном знакомстве с некоторыми из методологий, используемых в настоящее время, в этом курсе делается попытка использовать как можно больше непрофессиональной лексики, чтобы также быть полезными для родителей, которые, глядя через плечи своих детей, иногда сбиваются с толку «Новой математикой».Те, кто желает домашняя школа их ребенок (дети) могут найти наибольшую ценность от этого курса; будут предприняты попытки подробно осветить ряд связанных с педагогикой тем; Будут обсуждены многие основные компоненты (не обязательно связанные с математикой) обучения, а также будут включены ссылки на более глубокое освещение этих тем. Кроме того, если у вас возникнут проблемы с материалом, на каждой странице будут найдены ссылки на другие более базовые и / или лечебные источники в сообществе Wiki, которые помогут вам быстрее освоиться.Предоставляя ссылки "в обоих направлениях", как описано выше, можно надеяться, что этот курс может послужить отправной точкой для тех, кто желает получить больше информации о преподавании математики в начальных классах.

Этот курс предполагает, что читатель достиг определенного уровня знаний по темам, которые он охватывает. Таким образом, этот курс , а не , предназначен для обучения читателя математике. Для очень элементарного введения в математику для ребенка или взрослого, который считает себя математически неполноценным, вы можете прочитать развивающуюся книгу в Викиучебнике, Начальная математика.

Этот курс предназначен для ознакомления читателя с тем, как и почему основные математические знания и навыки преподаются именно так. Базовые знания математики должны быть всем, что нужно, чтобы найти ценность в этом курсе. Часто родители (и даже учителя) понимают тему только так, как их учили, но современные учебные программы по математике обычно построены таким образом, что темы освещаются разными способами, чтобы, среди прочего, учитывать разные стили обучения учащихся. .

Есть много способов научить математическому пониманию, и глубина математического понимания учащихся увеличивается, когда они исследуют его с разных точек зрения. Например, теория множественного интеллекта - это всего лишь одна точка зрения, которую учителя используют при использовании индивидуальных сильных сторон ученика.

Хотя идея о том, что существует множество стилей обучения, до сих пор не подтверждается исследованиями в этой области, в этом курсе признается, что существует множество стилей обучения.Таким образом, этот курс не обязательно предназначен для использования в качестве учебной программы по математике, хотя он может служить частью его основы. Например, этот курс , а не будет обучать читателя шаг за шагом, как умножать два больших числа, но будут объяснены различные строительные блоки и алгоритмы, с которыми студенты могут познакомиться в процессе обучения этому навыку.

Есть много очень хороших текстов / учебных программ / подходов; есть даже «школы», которые предполагают, что математику лучше всего преподавать без учебников, если учитель достаточно опытен.Этот курс никогда не мог претендовать на охват всего диапазона учебных программ. Основное внимание будет уделено содержательным знаниям и способам преподавания им ученика начальных классов. Тем не менее, в этом курсе будут предложены занятия, которые поддерживают представленную концепцию или навык, которые могут служить для ознакомления читателя с идеями для содержания их собственного курса.

Одна из всеобъемлющих идей, которую следует широко использовать при преподавании математики в начальных классах, касается связей, которые учащихся устанавливают в процессе обучения.Все наши математические представления взаимосвязаны. По этой причине учащиеся не должны изучать различные навыки, такие как умножение, и концепции, подобные тем, которые приобрели при изучении геометрии. Скорее их следует обучать вместе, чтобы они усиливали друг друга. Внутренние ссылки, обнаруженные в этом курсе, будут целенаправленно размещены там, чтобы подчеркнуть необходимость постоянного осознания взаимосвязанности математических представлений. Учителя должны предпочитать не «учить», а «руководить».

Так как же учителя , а не учат? Они делают это, вдохновляя студентов вдохновлять на собственное обучение. Самые вдохновляющие запросы часто возникают из собственных интересов студентов. Учителя начальных и даже старших классов признают, что абстрактное понимание математики не является целью большинства учащихся. Им нужно увидеть связей с реальным миром, чтобы вдохновить их на обучение. Учителя должны предпочесть использовать реальные задачи, требующие математических моделей (см. Ниже).Затем учеников следует побудить установить связей , ища закономерности, исследуя крайности, а также формируя и проверяя предположения. В то же время учителя должны знать, что вся математика, начиная с элементарных навыков счета и выше, является абстракцией и что некоторые идеи лучше объяснять как абстракции или обобщения из того, что уже известно, а не путем построения утомительных и неправдоподобных примеров из «реального мира». В конце концов, как часто плотники действительно используют тригонометрию для измерения высоты флагштока?

Современные преподаватели понимают, что учащиеся получают истинное «владение» своим пониманием, насколько это возможно, устанавливая связей самостоятельно - посредством собственной работы и исследований.«Говорить им, как это делать» не уважает и не превозносит их способности. С другой стороны, предоставление студентам возможности исследовать концепции, извлекая уроки из своих ошибок по ходу дела, в конечном итоге приводит к более сильному математическому пониманию. Это также побуждает их формировать привычки к обучению, которые делают их будущие исследования более эффективными и успешными. Связь с личными интересами ребенка также важна. Однако нереально ожидать, что студенты построят собственное понимание многих областей математики.Например, исчисление ускользало от математиков за столетия до того, как его создал сэр Исаак Ньютон. Более подходящим для уровня начальной школы алгоритм деления в столбик - это не то, что ученики могут разгадать самостоятельно.

Одним из очень важных компонентов современных методов, используемых для обучения математике, является использование манипуляторов (например, игрушек) и моделей (визуальных представлений), чтобы придать дополнительное измерение пониманию учащихся.В каждой главе этого курса читатель найдет различные примеры моделей, используемых для обучения различным математическим знаниям. Часто они обнаруживают, что эти модели служат для соединений с материалом, описанным в других разделах. Помните, что учителя в классе, как правило, очень изобретательны и изобретательны. Часто модели, представленные в этом курсе, имеют множество возможных вариантов и могут быть разных форм, размеров и обличий. Они намеренно представлены здесь в простых формах, чтобы облегчить читателю их идентификацию.

В этом курсе слово модель также иногда используется в несколько ином контексте, который обычно используется учителями любых дисциплин. Нам нравится моделировать хорошие математические привычки так же, как нам нравится моделировать любое хорошее поведение. Иногда учителя должны моделировать задач , выполняя их , как если бы они были учениками .

Примечание : копия из примерно следующих страниц изначально была создана из Викиучебников, но содержание начнет расходиться, чтобы учесть две разные аудитории.См. Викиверситет: Импорт.

Числа и операции [править | править источник]

Предалгебра [править | править источник]

Измерения и геометрия [править | править источник]

Дополнительные темы [править | править источник]

ссылок, которые обычно можно найти в этом курсе [править | править источник]


Перейти в старшую школу математики

.

Кембриджская начальная математика (0845/0096)

Maths помогает нам мыслить аналитически и лучше рассуждать. Наша программа начальной математики поощряет пожизненный энтузиазм к аналитическому и рациональному мышлению.

Что будут изучать студенты?

Учащиеся развивают целостное понимание предмета, уделяя особое внимание принципам, шаблонам, системам, функциям и отношениям. Они станут математически компетентными и свободно будут проводить вычисления, которые они смогут применять в повседневных ситуациях.

«Мыслить и работать математически», уникальная особенность нашей учебной программы, побуждает учащихся разговаривать с другими, оспаривать идеи и предоставлять доказательства, подтверждающие предположения и решения. Когда учащиеся думают и работают математически, они активно стремятся осмыслить идеи и выстроить связи между различными фактами, процедурами и концепциями. Это поддерживает мышление более высокого порядка, которое помогает им смотреть на мир с математической точки зрения.

Как преподается программа?

Мы разделили этот предмет на три основные области, называемые «нити», которые проходят через каждый этап начальной математики.Учащиеся будут развивать навыки в:

  • Номер
  • Геометрия и мера
  • Статистика и вероятность.

Нити работают вместе, чтобы помочь учащимся распознавать взаимосвязи математических понятий, когда они участвуют в творческом математическом мышлении, чтобы генерировать и улучшать беглость чисел.

Поддержка, которая поможет вам провести курс

Вы получите широкую поддержку по изучению Кембриджской начальной математики, включая задания, которые вы можете адаптировать к своему контексту:

  • Аттестационные материалы, включая тесты прогресса и прошлые документы Cambridge Checkpoint.
  • Структура учебной программы.
  • Онлайн и очное обучение.
  • Схемы работы.
  • Руководство для учителя.

Мы также работаем с рядом сторонних издателей, чтобы производить высококачественные одобренные ресурсы для поддержки этой платформы.

Оценка

Благодаря ряду экзаменов, доступных по этому предмету, включая Кембриджские тесты начального уровня и контрольные точки, вы можете выбрать подход, который лучше всего подходит для вашей школы и учащихся.

.

Базовая учебная программа по математике v1.19.indd

% PDF-1.3 % 1 0 obj >] / Pages 3 0 R / Type / Catalog / ViewerPreferences >>> endobj 2 0 obj > поток uuid: f6f30bd9-beee-ea49-8096-55b8994af781adobe: docid: indd: 16da2593-7f61-11de-b473-98120e8a5172xmp.id: 80cc0993-7773-4528-818f-4415032cbb27property: pdf1x 12a0ea47125cxmp.did: 409142210B2068118A6DB075C9315A72adobe: docid: indd: 16da2593-7f61-11de-b473-98120e8a5172default

  • преобразовано из приложения / x-indesign в приложение / pdfAdobe CC InDesign 14.0 (Macintosh) / 2019-03-04T13: 15: 32Z
  • 2019-03-04T13: 15: 32Z2019-03-04T13: 15: 33Z2019-03-04T13: 15: 33ZПриложение Adobe InDesign CC 14.0 (Macintosh) / pdf
  • Математика в начальной учебной программе v1.19.indd
  • Библиотека Adobe PDF 15.0FalsePDF / X-1: 2001PDF / X-1: 2001PDF / X-1a: 2001 конечный поток endobj 3 0 obj > endobj 5 0 obj / LastModified / NumberofPages 1 / OriginalDocumentID / PageUIDList> / PageWidthList >>>>> / Resources> / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / TrimBox [0.0 0,0 595,276 841,89] / Тип / Страница >> endobj 6 0 obj / LastModified / NumberofPages 1 / OriginalDocumentID / PageUIDList> / PageWidthList >>>>> / Resources> / Font> / ProcSet [/ PDF / Text / ImageC] / XObject >>> / TrimBox [0.0 0.0 595.276 841.89] / Type / Page >> endobj 8 0 объект / LastModified / NumberofPages 1 / OriginalDocumentID / PageUIDList> / PageWidthList >>>>> / Resources> / Font> / ProcSet [/ PDF / Text] >> / TrimBox [0.0 0.0 595.276 841.89] / Type / Page >> endobj 22 0 объект > поток HWko_q? MIZdhOE! Adq%) c) D; w̙3g ^ yiU; tu9 {uU (.~ ꏓ n | {9}, zzwLcth # ~ P! J8lPhXw

    .

    Математика: начальный | Проекты | Фонд эндаумента образования

    Уровень математики:

    начальных классов

    Программа математического мастерства - это общешкольный подход к обучению математике, целью которого является повышение успеваемости всех учеников и сокращение разрыва в успеваемости между учениками из малообеспеченных семей и их сверстниками. Программа направлена ​​на углубление понимания учащимися основных математических понятий. По сравнению с традиционными учебными программами, меньше тем освещается более глубоко, и больший упор делается на решение проблем и поощрение математического мышления.

    Эта оценка оценивала влияние овладения математикой на учеников 1 класса после того, как программа была реализована в школах в течение одного года. Предполагалось, что школы также начнут использовать программу во 2-м классе на втором году реализации и будут продолжать до тех пор, пока такой подход не будет внедрен во всей школе. В испытании участвовали восемьдесят три школы из Лондона и Юго-Востока, общая выборка составила 4 176 учеников. Участвующие школы прошли обучение и получили ресурсы для поддержки принятия программы, реализуемой образовательной благотворительной организацией Ark.

    Этот проект был одной из двух оценок мастерства математики, финансируемых Фондом эндаумента образования (EEF). Во втором проекте оценивалось влияние овладения математикой на учеников 7 класса.

    Уровень владения математикой: начальный класс

    ARK

    Тестирование подхода к обучению математике, разработанного в Сингапуре.

    Стоимость Доказательства силы Воздействие (мес.) + 2 добавить закрыть

    Информация о проекте

    Независимый оценщик

    Институт образования

    шаблоны

    DE

    Развитие эффективных учащихся

    Ул.

    Развертывание и развитие персонала

    Ключевые выводы

    Следующие выводы подводят итоги проекта

    1. В среднем учащиеся 1-го класса школ с углубленным изучением математики добились немного большего прогресса, чем ученики в школах, которые этого не сделали.Однако обнаруженный эффект не был статистически значимым, а это означает, что невозможно исключить случайность в качестве объяснения.

    2. Существует мало свидетельств того, что эффект «Мастерство математики» различается между детьми с разным уровнем предыдущих достижений.

    3. Объединение результатов этого исследования и второго рандомизированного контролируемого испытания математического мастерства с участием учеников 7-го класса усиливает общие доказательства этого подхода.

    4. Учитывая низкие затраты на одного ученика, программа «Мастерство математики» может представлять собой экономически эффективное изменение для начальных школ.

    5. Было бы целесообразно отслеживать среднесрочное и долгосрочное влияние этого подхода, отчасти для оценки степени, в которой тест, используемый в этой оценке, предсказывает общие достижения в математике и результаты в тестах с высокими ставками.

    Какое влияние?

    В целом результаты этой оценки оцениваются как умеренные. Оценка была организована как испытание эффективности, что означает, что она была направлена ​​на проверку программы в реальных условиях в большом количестве школ.

    При оценке использовался план рандомизированного контролируемого исследования, в котором школы были распределены случайным образом для начала программы в 2012 или 2013 годах. Рандомизация снизила вероятность того, что между школами в каждой группе были ненаблюдаемые различия, и повысила надежность результатов.

    Чтобы помочь оценить, следует ли отнести улучшение к программе, можно объединить результаты этого испытания с другими оценками уровня владения математикой. Этот подход, известный как «метаанализ», может привести к более точной оценке эффекта вмешательства.Однако также важно отметить ограничения метаанализа и осторожность, необходимую при интерпретации результатов, основанных на исследованиях, которые могут существенно различаться. Объединение результатов этого исследования и второго рандомизированного контролируемого исследования уровня мастерства математики с участием учеников 7-го класса показывает статистически значимое среднее влияние успеваемости за один дополнительный месяц. Этот комбинированный результат усиливает общие доказательства в пользу подхода и более подробно обсуждается в сводном отчете на веб-сайте EEF.

    Девяносто два процента школ и 82% учеников, которые первоначально были зачислены в испытание, были успешно завершены. Наблюдалась заметная средняя разница в начальном уровне успеваемости учеников, участвовавших в программе, по сравнению с учениками из группы сравнения, однако оценщики попытались учесть эту разницу с помощью статистического анализа. Участвующие школы вызвались принять участие в проекте, поэтому невозможно сказать, будут ли подобные эффекты наблюдаться во всех школах.

    Также необходима некоторая осторожность, поскольку тест, используемый для измерения воздействия вмешательства, сосредоточен на некоторых, но не на всех аспектах математических навыков учеников. Трудно оценить степень, в которой результаты этих тестов могут быть распространены на достижения в математике в долгосрочной перспективе.

    Группа Кол-во учеников (школы) (школы) Величина эффекта (доверительный интервал 95%) Прогресс в месяцах Сила доказательств Стоимость
    Математическое мастерство vs.сравнение 4176 учеников (83 школы) +0.10 (-0.01, +0.21) +2 месяца

    Насколько надежно обнаружение?

    В среднем учащиеся школ с углубленным изучением математики достигли большего прогресса, чем аналогичные ученики в школах, которые не приняли эту программу. Небольшой положительный эффект можно оценить как эквивалент примерно двухмесячного дополнительного прогресса. Однако эффект не был статистически значимым, а это означает, что невозможно определить, возникло ли оно не случайно.

    На данном этапе невозможно оценить, оказала ли программа большее или меньшее влияние на учеников, имеющих право на бесплатное школьное питание, по сравнению с их сверстниками. Существует мало свидетельств того, что эффект «Мастерство математики» различается у детей с разным уровнем предыдущих достижений.

    Однако в последующем исследовании данные ключевого этапа 2 будут использоваться для оценки долгосрочного воздействия программы на различные группы учеников.

    Сколько это стоит?

    Стоимость подхода оценивается примерно в 7 460 фунтов стерлингов в первый год для двухклассной начальной школы, включая расходы на подготовку учителей.Таким образом, средняя стоимость вмешательства «на ученика» составляет около 131 фунта стерлингов в год в течение первого года обучения, при этом затраты на одного ученика, вероятно, сократятся в будущем.

    .

    % PDF-1.4 % 517 0 obj> endobj xref 517 39 0000000016 00000 н. 0000003299 00000 н. 0000003381 00000 н. 0000003529 00000 н. 0000003757 00000 н. 0000003783 00000 н. 0000004036 00000 н. 0000004467 00000 н. 0000005642 00000 н. 0000005881 00000 н. 0000186886 00000 н. 0000187098 00000 н. 0000187258 00000 н. 0000187323 00000 н. 0000188022 00000 н. 0000188774 00000 н. 0000189586 00000 н. 0000189766 00000 н. 0000189830 00000 н. 0000190011 00000 н. 0000190881 00000 н. 0000191563 00000 н. 0000192152 00000 н. 0000192820 00000 н. 0000193572 00000 н. 0000194330 00000 н. 0000194396 00000 н. 0000194576 00000 н. 0000194763 00000 н. 0000195489 00000 н. 0000195687 00000 н. 0000199262 00000 н. 0000199577 00000 н. 0000199917 00000 н. 0000199985 00000 н. 0000200822 00000 н. 0000213020 00000 н. 0000213699 00000 н. 0000001076 00000 н. трейлер ] >> startxref 0 %% EOF 555 0 obj> поток xW} PT [v)! HȲ0FR] # Fe ، m7VJҝI0b * * 202T`5Mc; c} d7o ߽ s ~ w ~ [

    .

    Смотрите также