8 (913) 791-58-46
Заказать звонок

Ковкий чугун свойства


Свойства ковкого чугуна

Для производства отливок из чёрно-сердечного ковкого чугуна используют графитизирующий отжиг отливок белого чугуна. Данные отливки имеют повышенные σв и δ. Это возможно в результате образования хлопьевидного графита, который образуются в процессе отжига.

Ковкий чугун, как и другие виды чугуна, может иметь, как перлитную, так и ферритную металлическую основу всё зависит от его химического состава, а так же от режима термической обработки который используется.

Одним из главных плюсов отливок из ковкого чугуна является однородность свойств отливок по сечению и отсутствию напряжений.

Данный вид чугуна используется, как правило, для получения отливок толщина стенок, которых находится в диапазоне от 3 до 50 мм, что, прежде всего, обусловлено обеспечением безусловного получения структуры белого чугуна при литье и однородность строения, а так же свойств во всех сечениях отливки.

Наивысшие показатели прочность получают при высокодисперсном перлите, а так же малом количестве и компактности графита.

Температура влияет на химические свойств ковкого чугуна, в основном при достижении отметки в 400 градусов, в результате чего понижается σв и σ 0,2 и повышении δ.

Ферритный ковкий чугун можно охарактеризовать пониженным порогом хрупкости, нежели подобный порог у перлитного ковкого чугуна, при повышения твёрдости перлитного ковкого чугуна, так же повышается и его хрупкость.

Отливки из ковкого чугуна, в которых отсутствуют дефекты, могут сохранять герметичность под давлением в 20 МПа, а иногда и выше.

Что касается перлитного ковкого чугуна, то его можно охарактеризовать повышенной износостойкостью, при работах со смазкой и давлении до 20 МПа, но он быстро изнашивается при работе без смазки.

Что касается антифрикционных свойств, то они сравнительно низкие при работе со смазкой, а вот при работе без смазки можем наблюдать обратную картину, антифрикционные свойства перлитного ковкого чугуна повышаются.

Если обратить взор на обрабатываемость ковкого чугуна, то она такой же, как и у высокопрочного чугуна.

Читайте так же:

Производство тонкостенных труб

Варианты крепления металлочерепицы к абрешётке

Ковкий чугун | Литейные сплавы, их свойства и приготовление

Ковкий чугун представляет собой сплав железа с углеродом, в котором содержится 2,2—3,0 % углерода, 1,1—1,3% кремния, 0,3—0,6% марганца, до 0,2% фосфора и до 0,1% серы. Название «ковкий» следует понимать лишь в том смысле, что этот чугун по сравнению с серым является более вязким и пластичным. Благодаря этим свойствам ковкий чугун широко применяют для изготовления машиностроительных деталей, испытывающих в работе ударные нагрузки.

Ковкие чугуны для отливок по ГОСТ 1215—59 (см. табл. 1) изготовляют следующих марок: КЧ 30—6, КЧ 33—8, КЧ 35—10, КЧ 37—12, КЧ 45—6, КЧ 50—4, КЧ 56—4, КЧ 60—3, КЧ 63-2. Условные обозначения марок: К — ковкий; Ч — чугун; первые две цифры — предел прочности при растяжении в кгс/мм2, а последняя цифра — относительное удлинение в процентах. Большинство технологических операций (изготовление форм и стержней, заливка расплава, выбивка и очистка отливок) в литейных цехах ковкого чугуна осуществляют обычными способами. При формовке изменяют лишь способ подвода расплава к отливке и устройство литниково-питающей системы. Следует, однако, иметь в виду, что производство отливок из ковкого чугуна более сложно и длительно, чем из серого. Так как в вагранке получить чугун с низким (менее 3%) содержанием углерода очень трудно, то плавку обычно проводят последовательно в двух печах. Шихту расплавляют в вагранке, а полученный в ней жидкий чугун переливают в дуговую электрическую печь и уже там доводят до требуемого химического состава. Полученный расплав разливают в песчаные формы. Низкое содержание кремния и углерода приводит к образованию в отливках белого чугуна, обладающего большой твердостью и хрупкостью, обусловленной присутствием в основе чугуна цементита (рис. 15, а).

Таблица 1. Физические, технологические и механические свойства литейных сплавов

Сплав Плотность, г/см3 Усадка линейная, % Температура заливки, °С Предел прочности при растяжении, к гс/мм2 Относительное удлинение, % Твердость НВ
Серый чугун (обыкновенный) 7,0—7,3 0,8—1,0 1180—1450 12—44 28—64* 143—289
Ковкий чугун 7,1—7,4 1,4-1,6 1350—1480 30—63 2—12 163—269
Сталь литая углеродистая 7,7—7,85 1,6—2,0 1350—1570 40—60 10—24 109—199
Бронза 7,4—8,9 1,3-2,4 1000—1200 3—60 2—20 14—250
Латунь 8,3—8,6 1,9—2,0 1050—1150 15—70 4—20 30—160
Алюминиевые сплавы 2,5—2,9 1,25—1,35 690—780 12—35 0,5—15 45—95
Магниевые сплавы 1,7—1,85 1,35—1,6 690—800 9—28 1—6 30—75

* Предел прочности при изгибе, кгс/мм2.

После выбивки из форм и очистки отливки подвергают отжигу при температуре 900— 1000° С в специальных томильных печах. При отжиге цементит белого чугуна разлагается на феррит и свободный углерод, в результате чего исчезает свойственная белому чугуну хрупкость и он становится пластичным. При распаде цементита объем чугуна несколько увеличивается, отчего отливки во время отжига деформируются (коробятся). Если коробление достигает значительной величины, то отливки правят под прессом или ударами молота.

На рис. 15, б показана схема структуры наиболее распространенного ферритного ковкого чугуна, который характеризуется темным цветом излома и используется при производстве деталей сельскохозяйственных машин, ответственных автомобильных деталей, деталей тормоза и т. д.


Рис. 15. Структуры белого (а) и ковкого (б) чугуна: 1 — цементит, 2 — феррит, 3 — углерод отжига

маркировка, применение. Ковкий чугун и его перлитная структура

Чугун – сплав железа и углерода (>2,14%). Используемые чаще других чугуны содержат около 4% С, кремния – 0,5-4,5%, марганца -0,2-1,5%. Если учитывать цвет структуры металла на изломе, то его можно представить, как серый и белый. В сером – углерод содержится и в свободном виде (графит), и в химически связанном (цементит). Последнему присущи высокая твердость и хрупкость. В белом – С почти полностью находится в связанном состоянии, потому белый чугун также характеризуется повышенной твердостью.

Особенности ковкого чугуна

Ковкий чугун для получения требуемых механических качеств и соответствующей структуры производят из белого путем термической обработки – отжига или томления в песке при 800-850°С. При этом цементит распадается, и часть углерода выделяется в свободном состоянии, т.е. в виде графита. Отсюда его особая вязкость и пластичность. Процесс распада цементита и образования графита ускоряется при использовании присадок в виде алюминия и бора. Таким образом, чугун ковкий – металл модифицированный. Его модификация продолжается в процессе последующего (перлитного или ферритного) охлаждения с добавлением марганца, хрома и других присадок.

Перлитная структура ведет свое название от перламутра (при оптическом увеличении виден блеск) и представляет собой смесь пластин феррита и цементита. Ковкий чугун с такой структурой отличается высокой твердостью (235…305 НВ) и прочностью (Ств = 650…800 МПа), но незначительными пластичными свойствами.

При ферритном длительном (25-30 час.) охлаждении получается чугун с более значимыми пластичными качествами, но относительно невысокой прочностью (Ств = 370…300 МПа).

Маркировка ковких чугунов

По рекомендации ГОСТ 1215—79 маркировка ковкого чугуна содержит первые буквы его названия – КЧ. Следующие за ними две цифры отражают временное сопротивление, иными словами, сопротивление разрушению и деформации – КЧ30. Третья относится к относительному удлинению – величине пластической деформации материала при растяжении, и обозначается в процентах – КЧ30-6.

Кроме того, марки ковкого чугуна имеют градацию в зависимости от структуры. Так, к классу ферритных или ферритно-перлитных относятся марки КЧ 30-6; КЧ 33-8; КЧ 35-10; КЧ 37-12. Перлитная структура представлена в ковких чугунах марок: КЧ 45-7; КЧ 50-5; КЧ 55-4; КЧ 60-3; КЧ 65-3; КЧ 70-2; КЧ 80-1,5.

ГОСТ 26358 регламентирует механические свойства марок ковкого чугуна: временное сопротивление разрыву, твердость по Бринеллю НВ, относительное удлинение. Разрешено отклонение только в величине пластической деформации не более 1%, и то лишь по согласованию с потребителем.

Ковкий чугун: применение

Технологические и механические качества ковкого чугуна таковы, что позволяют использовать его для производства разнообразных деталей: от мельчайших до весящих несколько тонн, выдерживающих ударные и вибрационные нагрузки: фланцы, картеры, ступицы и др. Словом, ковкий чугун – это широкий спектр номенклатуры автомобилестроения, машиностроения, судостроения, электропромышленности, станкостроения и т.п.

Ковкий чугун

Ковкий чугун получают графитизирующим отжигом белого чугуна определенного состава по содержанию основных элементов и примесей.

В зависимости от режима термической обработки структура ковкого чугуна может состоять из феррита + углерод отжига, перлита или других продуктов распада аустенита (сорбита, троостита, игольчатого троостита, мартенсита и т.п.) + углерод отжига.

Ковкий чугун, полученный путем обезуглероживающего отжига, со структурой феррита в поверхностном слое и перлита + углерод отжига в сердцевине сечений отливки, в настоящее время утратил промышленное значение и не рассматривается.

Графитизация белого чугуна происходит при специальной термической обработке - отжиге.

Для получения ферритного и перлитного ковкого чугуна отжиг отливок ведут в нейтральной среде; основным процессом является графитизация, а обезуглероживание имеет ограниченные размеры и происходит попутно.

При отжиге отливок в защитной атмосфере наружный обезуглероженный и следующий за ним слой со структурой перлита отсутствует.

Свойства ферритного ковкого чугуна зависят от содержания углерода и кремния.

При конструировании рекомендуется ограничивать размеры сечений в отливках при плавке двойным процессом вагранка - электропечь - 30-40 мм, при плавке в вагранке - 20-30 мм. При модифицировании исходного белого чугуна присадками теллура и особенно магния максимальный размер сечений отливок может быть значительно увеличен - до 100-120 мм.

Минимальная толщина сечений отливок из ковкого чугуна в зависимости от их конфигурации и состава чугуна принимается в пределах 2,5-8 мм.

Усадка белого чугуна зависит от содержания в нем углерода.

В таблице 30 приведены размеры объемной усадки стали, белого и серого чугуна при перегреве расплавленного сплава на 100оС, в таблице 31 - величина линейной усадки в твердом состоянии.

Вследствие большего модуля упругости и меньшей теплопроводности величина напряжений в отливках белого чугуна значительно выше, чем в отливках серого чугуна, а вследствие меньшей прочности и теплопроводности - больше, чем в стальных отливках. Поэтому при проектировании следует предпочитать конструкции со свободной усадкой и избегать резких переходов между различными сечениями отливки, вызывающих концентрацию напряжений и пониженную усталостную прочность.

Таблица 30. Объемная усадка в %

Сплав

В жидком состоянии

При затвердевании

Общая

Сталь

1,6

3

4,6

Белый чугун*

2-2,3

4,6-3

6,6-5,3

Серый чугун

2,5

0,9

1,4

 * В зависимости от содержания углерода

Таблица 31. Линейная усадка в %

Сплав

Доперлитная

Перлитная

Полная в твердом состоянии

Сталь

1,2

1

2,2

Белый чугун*

0,3

1

1,3

Серый чугун

0

1

1

 Остаточные напряжения в отливках из ковкого чугуна вследствие длительной термической обработки значительно меньше, чем в отливках из стали и серого чугуна, и не превышают 0,5 кГ/мм2.

При термической обработке отливки ковкого чугуна увеличиваются в объеме в зависимости от содержания углерода (примерно на 50% от величины усадки).

Сопротивление статистическими нагрузками. Механические свойства ковкого чугуна зависят от свойств основной металлической массы, принимающей на себя почти все силовое поле и в меньшей мере ослабленной включениями графита по сравнению с серым чугуном. Прочность графита очень мала, и площадь его включений обычно исключается при расчетах (таблице 32)

32. Влияние включений графита на силовое поле в чугуне

Показатель

Серый чугун

Ковкий чугун

Уменьшение площади основной металлической массы а = Ест / Ечуг

До 3

1,15

Надрезающие действия включений графита B = σст / σчуг

1,2-2

1,15-1,6

 Главное преимущество ковкого чугуна по сравнению с серым заключается в его пластичности. Диаграммы деформацией при растяжении образцов различных сортов ковкого чугуна характеризуют его упругие и пластические свойства. Так как область текучести незначительна, при испытаниях ковкого чугуна определяют условный предел текучести σ0,2.

Общая зависимость предела прочности при растяжении σв от относительного удлинения δ ковкого чугуна различна для его отдельных сортов.

Для ферритного ковкого чугуна увеличение σв всегда связанно с увеличением пластичности. Предела пропорциональности изменяется с изменением величины предела прочности при растяжении; соотношение этих величин

σпц / σв = 0,65 / 0,75

В соответствии с малой изменяемостью структурных составляющих ферритного ковкого чугуна - графита и феррита - механические его свойства могут быть надежно улучшены главным образом снижением содержания углерода и практически не зависят от изменений величины включений графита.

Таблица 33. Марки и механические свойства ковкого чугуна

Марки ковкого чугуна

Временное сопротивление разрыву в кГ/мм2 (не менее)

Относительное удлинение в % (не менее)

Твердость НВ (не менее)

КЧ 30-6
КЧ 33-8
КЧ 35-10
КЧ 37-12
КЧ 45-6
КЧ 50-4
КЧ 56-4
КЧ 60-3
КЧ 63-2

30
33
35
37
45
50
56
60
63

6
8
10
12
6*
4
4
3
2

163
163
163
163
241
241
269
269
269

 * С согласия заказчика допускается понижение относительного удлинения на 3%.

По ГОСТ 1215-59 ковкий чугун подразделяется по маркам (таблица 33)

Перлитный ковкий чугун является одним из прочных сортов чугуна и по структурному составу и механическими свойствами близко подходит к стали; с увеличением σв относительное удлинение снижается.

Количество связанного углерода в перлитном ковком чугуне изменяется в пределах 0,3-0,8% в зависимости от температуры нормализации, скорости охлаждения и условий термической обработки области эвтектоидных превращений.

Эти факторы определяют и структуру основной металлической массы перлитного ковкого чугуна, которая может меняется от пластинчатого и зернистого перлита до сорбита, мартенсита, а в некоторых случаях и с дисперсными включениями цементита.

Дальнейшее улучшение свойств перлитного ковкого чугуна достигается его легированием и модифицированием, присадками титана, алюминия, бора, висмута или сурьмы в различных сочетаниях.

Присутствие феррита в структуре перлитного ковкого чугуна ухудшает его свойства, так как влечет за собой резкое снижение прочности (σв) при незначительном увеличении пластичности (δ). Когда основная металлическая масса чугуна становится перлитной, незначительное снижение пластичности при стабилизации, сфероидизации и пр. приводит к значительному увеличению прочности.

Особое место занимает термически улучшенный ковкий чугун, закаленный и отпущенный, отличающийся высокой однородностью свойств как в отдельных сечениях, так и во всей партии.

Сопротивление динамическим нагрузкам. Динамические свойства качественного ферритного ковкого чугуна характеризуются следующими данными. Ударная вязкость при сечении образца 10Х10 мм с клиновым вырезом глубиной 2 мм ан = 2кГ*м/см2, при вырезе глубиной 5 мм с радиусом закругления 0,5 мм ан = 0,8кГ*м/см2. Динамическая вязкость (предел выносливости) σ-1 = 17 кГ/мм2. Отношение предела выносливости к пределу прочности при растяжении

σ-1 / σвр = 0,5

Ударная вязкость резко снижается при появлении белого интеркристаллитного излома, которого можно избежать весьма ускоренным или очень замедленным охлаждением после отжига в интервале температур 650-450оС

Предел выносливости ферритного ковкого чугуна в 1,2-2 раза меньше, чем стали, и в 4-6 раз больше чем серого чугуна; он зависит от асимметричности нагрузок и повышается при отрицательных величинах средних напряжений. Поэтому отливки, работающие при повторно-переменных растягивающее - сжимающих усилиях, следует подвергнуть предварительному сжатию без растягивающих напряжений при периодических нагружениях.

Предел выносливости ферритного ковкого чугуна равен 12-16 кГ/мм2 и специальных малоуглеродистых легированных перлитных ковких чугунов 30-35 кГ/мм2.

Состояние поверхности ковкого чугуна оказывает влияние на величину предела выносливости, чем у стали. Удаление поверхностного слоя ферритного чугуна повышает динамическую вязкость на 15-25% (таблица 34)

Таблица 34. Относительное влияние механической обработки на свойства ковкого чугуна

Состояние поверхности

Статистические свойства

Динамические свойства

σв

δ

ан

σ-1

Литая

1

1

1

1

Механически обработанная

0,95

0,3

0,75

1,3

 Коэффициенты усталостной прочности для железоуглеродистых сплавов при различных видах нагрузок даны в таблице 35.

Таблица 35. Коэффициенты усталостной прочности

Напряжения

Сталь

Ковкий чугун

Серый чугун

σ-1
σ-1p
t-1k

1.00
0.70
058

1.00
0.60
0.70

1.00
0.50
0.80

Примечание. Ковкий чугун превосходит сталь при кручении, а серый чугун при растяжении - сжатии.

Технологические свойства. Обрабатываемость ковкого чугуна зависит от структуры основной металлической массы и от включений графита. Наличие промежуточного перлитного слоя под наружной ферритной оболочкой определяет толщину первой стружки в 1,5-2,0 мм.

Обрабатываемость ферритного ковкого чугуна весьма высока; включения графита оказывают смазывающее действие и дробят стружку.

Обрабатываемость перлитного ковкого чугуна уступает обрабатываемости ферритного и определяется степенью однородности и дисперсности структуры основной металлической массы. Так, обрабатываемость чугуна со сфероидизированной структурой перлита и даже цементита вполне удовлетворительна, несмотря на повышенную твердость.

Износостойкость и антифрикционные свойства ковкого чугуна определяются структурой, условиями трения и величиной зазоров.

Наиболее благоприятной структурой обладает перлитный ковкий чугун, при отсутствии в нем изолированных включении графита, окруженных ферритной отсрочкой.

Коэффициент трения перлитного ковкого чугуна равен при жидкостном трении 0,05-0,10 и при сухом 0,30-0,45.

Втулки из этого чугуна работают на металлорежущем оборудовании при pv=50, на металлодавящем оборудовании при pv = 120, на тракторах при рv= 160 кГ/см2*сек.

Зазоры между валом и втулками по сравнению с бронзовыми увеличиваются на 10-15%.

Ферритный ковкий чугун применяется при малых давлениях (рv ≤ 20 кГ/см2*сек), особенно при малых скоростях и работе со смазкой.

Обработанные поверхности ферритного чугуна корродируют быстрее, чем перлитного чугуна и стали. Стойкость поверхности ковкого чугуна повышается применением диффузионных покрытий: фосфатированием, бесщелочным оксидированием, пассивированием и пр.

При контактной коррозии ковкий чугун обнаруживает пониженный, положительный электродный потенциал.

Ковкий чугун, особенно ферритный, хорошо поддается запрессовке, расчеканке и легко заполняет зазоры.

Прочность запрессовки втулок из ковкого чугуна при одном и том же натяге выше по сравнению с латунным на 50%.

Механические и физические свойства ковкого чугуна. В таблице 36 приведены основные характеристики наиболее часто применяемых марок ковкого чугуна применительно к следующим исходным условиям: толщина стенок 10 мм; поверхность обработанная, форма сечения при изгибе прямоугольная, при прочих нагрузках любая; рабочая температура 20оС.

В условиях, отличных от перечисленных, значения характеристик получаются умножением данных таблицы 36 на коэффициент массы Км, поверхности Кп, формы Кф, температуры Кt , причем влияние температур учитывается только в условиях их отрицательного действия. Поправочный коэффициент для усталостных характеристик учитывает только характер поверхности.

Нормы прочности приведены для обработанных разрывных образцов. Поправочные коэффициенты приведены в таблице 36. В таблице 37  приведены примеры применения ковкого чугуна.

Упругие свойства ковкого чугуна определяются из основных данных таблиц - модулями нормальной упругости Е и сдвига G и коэффициентом Пуассона u. Величины же пластических деформаций и условного модуля упругости находятся по соответствующим графам таблицы. При этом учитывается, что при многократных повторных нагрузках пластические деформации уменьшаются и остаются почти одни упругие деформации.

Поправочный коэффициент для усталостных характеристик учитывает только характер поверхности. По влиянию массы, формы сечения и температуры проверенные данные отсутствуют.

Физические свойства определяются из таблицы с поправками на температуру Кt. Например, коэффициент линейного расширения в интервале до 500оС определяется выражением

а0500 = а0100 [1 + Кt (T - 100 = 10.8 * 10 [1 + 0,00072 (500-100) ] = 14 * 10

Данные таблицы являются минимальными для ковкого чугуна соответствующей марки, гарантийными, и могут быть использованы для расчета деталей.

Общий объем применения ковкого чугуна в машиностроении относительно невелик и составляет около 3% от применяемых отливок из железоуглеродистых сплавов. Главной причиной этого являются технологические затруднения в процессе производства отливок, необходимость применения длительной термической обработки и ограниченная величина допускаемых размеров сечений отливок, сложность операций поверхностного упрочнения и операций сварки.

Таблица 30. Объемная усадка в %

Сплав

В жидком состоянии

При затвердевании

Общая

Сталь

1,6

3

4,6

Белый чугун*

2-2,3

4,6-3

6,6-5,3

Серый чугун

2,5

0,9

1,4

 

* В зависимости от содержания углерода

Таблица 31. Линейная усадка в %

Сплав

Доперлитная

Перлитная

Полная в твердом состоянии

Сталь

1,2

1

2,2

Белый чугун*

0,3

1

1,3

Серый чугун

0

1

1

 

Таблица 32. Влияние включений графита на силовое поле в чугуне

Показатель

Серый чугун

Ковкий чугун

Уменьшение площади основной металлической массы а = Ест / Ечуг

До 3

1,15

Надрезающие действия включений графита B = σст / σчуг

1,2-2

1,15-1,6

Таблица 33. Марки и механические свойства ковкого чугуна

Марки ковкого чугуна

Временное сопротивление разрыву в кГ/мм2 (не менее)

Относительное удлинение в % (не менее)

Твердость НВ (не менее)

КЧ 30-6
КЧ 33-8
КЧ 35-10
КЧ 37-12
КЧ 45-6
КЧ 50-4
КЧ 56-4
КЧ 60-3
КЧ 63-2

30
33
35
37
45
50
56
60
63

6
8
10
12
6*
4
4
3
2

163
163
163
163
241
241
269
269
269

* С согласия заказчика допускается понижение относительного удлинения на 3%.

Таблица 34. Относительное влияние механической обработки на свойства ковкого чугуна

Состояние поверхности

Статистические свойства

Динамические свойства

σв

δ

ан

σ-1

Литая

1

1

1

1

Механически обработанная

0,95

0,3

0,75

1,3

 

Таблица 35. Коэффициенты усталостной прочности

Напряжения

Сталь

Ковкий чугун

Серый чугун

σ-1
σ-1p
t-1k

1.00
0.70
058

1.00
0.60
0.70

1.00
0.50
0.80

Примечание. Ковкий чугун превосходит сталь при кручении, а серый чугун при растяжении - сжатии.

Таблица 36. Основные характеристики ковкого чугуна марок КЧ 35-10 и КЧ 37-12

Наименование свойства

Обозначение

Размерность

Марки чугуна

КЧ 35-10

КЧ 37-12

Механические свойства

Растяжения

Предел текучести

σ0,2

кГ/мм2

22,0

23,0

Предел прочности

σв

кГ/мм2

33,2

35,0

Относительное удлинение

δ

%

9,0

10,8

Относительное сужение

ψ

%

11,0

13,0

Кручения

Предел текучести

t0.4

кГ/мм2

15,0

16,0

Предел прочности

tв

кГ/мм2

35,0

37,0

Относительный угол закручивания

t

-

23,0

25,0

Сжатия

Предел текучести

σ0сж

кГ/мм2

24,0

25,0

Изгиб

Предел текучести

σ 0,2 И

кГ/мм2

34,0

35,0

Предел прочности

σви

кГ/мм2

57,0

58,0

Предел прочности

tв ср

кГ/мм2

30,0

30,0

Другие механические и физические свойства

После отжига

ан

кГ * м/см2

1,4

1,6

Предел выносливости при изгибе

σ-1

кГ/мм2

14,0

14,0

Предел выносливости при растяжении-сжатии

σ-1 р

кГ/мм2

8,0

8,0

Предел выносливости при кручении

t-1

кГ/мм2

13,0

13,0

Твердость НВ

НВ

кГ/мм2

163

163

Модуль нормальной упругости

Е

кГ/мм2

16 600

17 000

Коэффициент Пуассона

u

-

0,27

0,25

Удельный вес

y

Г/см3

7,22

7,21

Коэффициент линейного расширения

а0-100оС

см/см * град

10,2

10,0

Теплопроводность

λ

кал/см * сек * оС

0,150

0,150

Теплоемкость

с

кал/Г * оС

0,122

0,122

Электросопротивление

р

мк * ом * см3

36,0

38,0

Магнитная индукция

В25
В50
В100
Вr

гс

12 000
13 500
14 600
5 500

12 300
13 800
14 600
5 500

Остаточная коэрцитивная сила

Нс

э

1,3-3,0

1,3-3,0

Химический состав (примерный)

Углерод

C

%

2.3-2.0

2.2-2.5

Марганец

Mn

%

0.3-0.5

0.3-0.5

Кремний

Si

%

1.1-1.3

1.2-1.4

Сера

S

%

0.12

0.12

Фосфор

P

%

0.12

0.12

Хром

Cr

%

0.06

0.026

Критические точки в оС

-

Ас1

oC

685

790

-

Ас3

oC

815

820

-

Аr1

oC

725

730

-

Ar3

oC

760

765

 

Поправочные коэффициенты к основным характеристикам ковкого чугуна
1. Коэффициенты литой поверхности Rn для всех марок ковкого чугуна
σТ - 1,05
δ - 1,1
ан - 1,3
σ-1 - 0,75
2. Физические константы для всех марок ковкого чугуна:
а -100 +0,0007
С +0,0005
λ -0,00024 +0,0025
3. Температурные коэффициенты Кt ( для σТ):

t oC

КЧ 35-10

КЧ 37-12

200-100

1,0

1,0

300

0,95

0,98

500

0,78

0,85

 

Таблица 37. Примеры применения ковкого чугуна в различных отраслях промышленности

Отросоль машиностроения

Детали

Условия работы

Рекомендуемые марки чугуна

Сельскохозяйственное

Шестерни, звенья цепей, собачки, пальцы, ключи, гребни, головки ножей и т.д.

Статистические и динамические нагрузки

КЧ 30-6

Текстильное

Банкаброши, желоньеры и т.п.

Статистические и динамические нагрузки

КЧ 30-6

Автомобильное и тракторное

Картеры - заднего моста, дифференциала, руля, ступицы колес, кронштейны двигателя, рессор, тормоза, тормозные колодки, педали, накладки, пробки, балансиры, катки, втулки

Сложные переменные динамические нагрузки
Износ

КЧ 35-10
КЧ 30-6
КЧ 45-6

Вагоностроение

Детали тормозов, подшипника, кронштейны, тяговые сцепления, скобы и т.д.

Внутреннее давление, ударные нагрузки

КЧ 35-10
КЧ 30-6

Судостроение

Иллюминаторы, кронштейны и т.д.

Изгиб, ударные нагрузки

КЧ 35-10
КЧ 30-6

Станкостроение

Втулки

Износ

КЧ 45-6
КЧ 50-4

Санитарное строительство, водо -, газо - и паропроводная арматура

Фитинги, вентили, радиаторные ниппели, пневматические корпуса и т.д.

Внутреннее давление до 20 ат

КЧ 30-5

 


что это, свойства и применение, маркировка марок чугуна


Виды чугунов

Чугун – это сплав железа с углеродом, где содержание последнего более 2,14%. В состав такого сплава могут входить и другие элементы. Их содержание определяет многие параметры и свойства материала.

В железоуглеродистом сплаве содержится цементит, графит и графит с цементитом. Цементитом называют соединение углерода с железом состава Fe3C. Графит – это одна из аллотропных модификаций углерода со слоистой структурой.

В зависимости от содержания указанных соединений меняется цвет изделия. Когда преобладает цементит, материал приобретает светлый отблеск. Отсюда и получилось название «белый».

Графит обладает темной окраской, которую он придает и отливкам. Именно структура графитовых включений определяет пластические свойства материала.


Виды чугуна по ГОСТ.

Исходя из этого сплав разделяют на:

  • серый;
  • ковкий;
  • высокопрочный;
  • особого назначения.

К первому типу материалов относится сплав железа с углеродом в графитовой модификации хлопьевидной, пластинчатой или глобулярной формы. Он обладает высокими литейными свойствами. Благодаря им часто используется для получения деталей сложной формы.

В то же время хрупкость сплава ограничивает его применение в изделиях, подвергающихся растяжению или изгибу. Сплав с графитом глобулярной формы характеризуется высокими прочностными свойствами. Его относят к одному из подвидов серого чугуна.

Формирование графита указанной формы достигается благодаря добавкам магния и церия. Другие же формы получаются вследствие разных скоростей охлаждения.

Форма включений может быть различной: в виде хлопьев, шаров или пластин. Именно на получении первого вида структуры основан метод получения ковкого чугуна.

Ковкий чугун содержит углерод в интервале концентраций от 2,4–2,8%. Кроме того, в сплаве могут содержаться: кремний, марганец, сера и фосфор. Указанные элементы влияют на конечные свойства изделий.


Микроструктура чугуна

Графит.

Графит в чугуне является кристаллической разновидно­стью углерода, обладающей гексагональной решеткой со слоистым расположением атомов или твердым раствором железа и других элементов на его основе. Под микроскопом графит имеет черный (темный) вид.

Для серого чугуна лучшими являются мелкие, завихренные включения пластинчатого графита (рис.1, а). Крупные и прямо­линейные графитные включения (рис.1,б), разделяющие метал­лическую основу и резко понижающие предел прочности на растя­жение серого чугуна, являются недопустимыми.

Рис 1. Включения плавтинчатого графита до травления; х200

У высокопрочного магниевого чугуна графитные включения имеют шаровидную форму (рис 2, а), а у ковкого — хлопьевид­ную (рис 2, б).

Рис 2. Графитные включения в микроструктуре чугуна до травления:

а-шаровидные в высокопрочном,х200;

б-хлопьевидные в ковком, х500.

Приготовление микрошлифов с графитом в структуре требует особой осторожности, чтобы не вырвать и не вымыть порошкообраз­ного графита. Графит удобнее наблюдать на светлой металлической основе до травления.

Металлическая основа серого чугуна.

После травления микро­структура серого чугуна может оказаться перлитной (фиг. 32, а), отвечающей высокой твердости, износостойкости и вместе с тем удовлетворительной обрабатываемости резанием.

Наличие феррита в металлической основе (фиг. 32, б) снижает механические свойства серого чугуна и особенно его твердость и износостойкость. Ферритная микроструктура серого чугуна (фиг. 33, а)ведет к недопустимо низкой твердости и износостой­кости.

Рис. 3. Серый чугун после травления:

а-перлитно-графитная микроструктура, отвечающая высокой твердости и износостойкости, х1000;

б-перлитно-ферритно-графитная микроструктура, отвечающая пониженной твердости и износостойкости, х 200.

Ферритная микроструктура серого чугуна (рис. 4, а) ведет к недопустимо низкой твердости и износостой­кости. Перлито-цементитная металлическая основа чугуна (рис. 4, б) делает чугун твердым и ухудшает его обрабатываемость режущим инструментом, а крупные выделения цементита вызывают отбел и препятствуют его обработке резанием.

Рис 4. Серый чугун

а- ферритно-графитная микроструктура, отвечающая очень низкой твердости и износостойкости, х500; б- цементитно-перлитно-графитная микроструктура, отвечающая очень плохой обрабатываемости реущим инструментом, х200.

Подобным же образом действуют и выделения фосфидной эвтектики в чугуне, которые очень тверды: тройная фосфидная эвтектика Fe3P— Fe3C— Fе (рис 5., α) и двойная Fe3P— Fe (рис 5,б).

Рис. 5. Фосфидная эвтектика в сером чугуне, отличающаяся износостойкостью, твердостью и хрупкостью, х1000

Микроструктура низкоуглеродистого модифицированного чугуна.

Этот чугун до модифицирования имеет микроструктуру (рис 6, а), состоящую из перлита и цементита. После модифицирования чугуна смесью 75%-ного ферросилиция и алюминия его микроструктура

(рис. 6,б) состоит из мелких завихренных равномерно распреде­ленных графитных включений в перлитной металлической основе.

Рис. 6. Низкоуглеродисый чугун, х200

а- микроструктура до модифицирования-цементит и перлит; б- то же , но после модифицирования ферросилицием — графит и перлит

Микроструктура высокопрочного магниевого чугуна.

Чугун до модифицирования имеет микроструктуру серого чугуна с пластин­чатым графитом (фиг. 36, а). После добавки лигатуры из магния с 75%-ным ферросилицием его макроструктура состоит из перлита и феррита, окружающего шаровидный графит (фиг. 36,6).

Рис 7. Высопрочный чугун с шаровидным графитом, х200

а- микроструктура до модифицирования; б- то же , после модифицирования лигатурой магния с ферросилицием-шаровидный графит, феррит и перлит

Микроструктура ковкого чугуна.

Микроструктура белого чугуна, из которого путем отжига получается ковкий чугун, состоит из пер­лита и отдельных выделений ледебурита и структурно свободного цементита (рис. 8, а). Отжиг при 950° с целью проведения первое стадии графитизации (графитизации структурно- свободного цемен­тита и ледебурита) дает структуру (рис. 8,б), состоящую из хлопьевидного графита, окруженного ферритом, и перлита. Вто­рая стадия графитизации (графитизация цементита, входящего в состав перлита) происходит при 735° и дает структуру (рис. 8, в)„ состоящую из хлопьевидного графита и зерен феррита. Такая струк­тура отличается хорошей пластичностью, высоким удлинением; и вязкостью.

Рис. 8. Ковкий чугун, х250.

а- до отжига ( белый доэвтектический чугун),

б- после отжига ( после первой стадии графитизации),

в- после отжига ( после второй стадии графитизации).

Особенности производства ковкого чугуна


Форма графитовых включений и металлическая основа.
Чтобы получить ковкий чугун, необходимо следовать технологии, основанной на термическом отжиге заготовок при определенной температуре. В результате данного процесса происходит распад цементита и аустенита. Таким образом, получают углерод, кристаллизующийся в графите хлопьевидной формы.

Аустенитом называют железо с гранецентрированным типом решетки. Данная модификация является высокотемпературной. В железоуглеродистых сталях он может формироваться при температурах более 727 градусов, а в чистом железе при 910 градусах.

Окончательный процесс формирования графита происходит при более низких температурах – в диапазоне 720-760 градусов. Именно углерод в такой модификации определяет такие характеристики, как пластичность и прочность ковкого чугуна.

Метод предусматривает термообработку ковких чугунов в два этапа. Вначале материал подвергают воздействию температуры до 1000 градусов. Выдержка отливок в указанных условиях приводит к распаду ледебурита на графит и аустенит.

После отжига при высокой температуре изделие охлаждают до 720-760 градусов. В результате формируется перлит, распадающийся в дальнейшем на феррит и графит.

Плавку материала для изготовления чугуна осуществляют в вагранках, пламенных и электропечах. Иногда этот процесс осуществляют в комбинированных печах. Исходные отливки могут содержать различное количество углерода.

При изготовлении ферритного сплава необходимо использовать заготовки с меньшей концентрацией углерода. Такие изделия обладают высокой температурой плавления, поэтому требуют повышенную температуру перегрева.

Обычно для плавки в данной ситуации используют две печи. В вагранке происходит расплавление, а в электродуговой печи перегрев. Описанная технология плавки называется дуплекс-процессом.

Для производства перлитного сплава используют заготовки с большим содержанием «С». Для плавки такого материала достаточно вагранки.

Особенностью производства форм для отливок является повышенная усадка белого сплава. Из-за этого процесса возникает необходимость установки боковых прибылей у каждого местного утолщения отливки. Это позволяет избежать формирования раковин.

Для того, чтобы увеличить скорость охлаждения более толстых мест отливки используются металлические холодильники.


Влияние углерода и кремния на структуру чугуна и зависимость структуры от толщины чугуна.

Название данного материала обусловлено лишь его более высокими пластичными свойствами. На самом деле его нельзя подвергать ковке. Данный тип сплава используется так же, как и другие его виды.

Преимуществом ковкого чугуна, по сравнению с белым, является высокая антикоррозионная стойкость. По этому свойству материал занимает более высокие позиции, чем углеродистые стали. По механическим свойствам он уступает сталям, однако превосходит белый чугун.

Разновидности ковкого чугуна

В зависимости от процесса производства ковкий чугун бывает ферритным и перлитным. В первом случае изготовление осуществляется в нейтральной среде. Такой материал отличается ферритной структурой с остаточным углеродом отжига.

В состав сплава до термообработки входит 2,2-2,99 процента углерода, а также добавки других элементов, содержание которых не превышает одного процента. Уменьшение кон сопровождается увеличением прочностных характеристик материала. Однако его литейные свойства снижаются.

Данный материал широко применяется при изготовлении деталей для машин и сельхоз техники, где необходима стойкость к постоянным нагрузкам и напряжениям.

Термообработка изделий в окислительной среде приводит к формированию белосердечного или перлитного чугуна. Данный сплав отличается другими концентрациями углерода до отжига – 2,8-3,3 процента. После термического воздействия количество углерода падает до 0,6-2,2%.

Данный сплав отличается более низкими пластическими свойствами. В связи с этим его используют в задачах, не требующих стойкости к серьезным пластическим и химическим нагрузкам.

Свойства ковких чугунов


Состав ковкого чугуна.
Ковкий чугун обладает механическими свойствами, зависящими от содержания кремния углерода в графитовой аллотропной модификации. Для белосердечного материала влияние оказывают также хром и марганец.

Различие структуры изделий определяет и различие свойств. Так, черносердечный сплав характеризуется большей пластичностью, но меньшей твердостью, чем перлитный тип.

Высокие прочностные характеристики данных сплавов обеспечиваются графитом хлопьевидной формы. Несмотря на свое название, данные изделия не поддаются ковке. Они изготавливаются путем отливки деталей в заданные формы.

Главным достоинством ковкого сплава является однородность свойств по сечению материала, а также отсутствие напряжений.

С точки зрения других характеристик они отличаются:

  • хорошей текучестью при литье;
  • поглощением вибраций;
  • высокой износостойкостью;
  • хорошей коррозионной стойкостью к влаге и многим агрессивным химическим соединениям;
  • высокой стойкостью к ударным нагрузкам.

Графитизация, особенности ковкого чугуна, понятие о ферритном и перлитном КЧ

В металлургии получают ковкий чугун методом графитизации белого доэвтектического чугуна, содержащего графит в количестве 2%-4,3%. При графитизации происходит такой отжиг, при котором распадается цементит (карбид железа), весь углерод или его часть преобразуется в графит (углерод отжига). Углерод в КЧ является важным элементом, который обуславливает его механические свойства, чем выше марка чугуна, тем ниже содержание графита. Благодаря технологическому процессу, привносящему преобразования в состав сплава, КЧ приобретает пластичность, он по своим свойствам находится между серым чугуном и сталью. В отличие от стали, сплав имеет текучесть, демпфирующую способность (поглощение вибраций), более высокую износостойкость.


Физические свойства ковкого чугуна.

КЧ производят в камерных и тоннельных печах непрерывного действия.

Неоспоримыми преимуществами КЧ являются:

  • однородность;
  • отсутствие напряжений;
  • высокие механические и антикоррозионные свойства;
  • великолепная устойчивость в среде влажного воздуха, топочных газов, воды;
  • пластичность;
  • прочность;
  • КЧ поддается сварке, расчеканке, запрессовке, холодной и горячей правке, обработке резанием.

Высокая прочность КЧ объясняется незначительным влиянием хлопьевидной структуры на механические характеристики металлического ядра. Изделия из такого сплава характеризуются вязкостью и пластичностью, хорошим сопротивлением ударным нагрузкам, но ковке изделия не подвергаются, их отливают. Недостатками материала является сложная технология, длительность процесса производства продукции.

По способу производства КЧ классифицируют на ферритный класс Ф (черносердечный) и перлитный класс П (белосердечный). Ферритный КЧ производят двухстадийным графитизирующим отжигом белого чугуна. Перлитный КЧ получаются в процессе отжига в окислительных средах. В итоге происходит изменение структуры чугуна и обезуглероживание. Это один из самых прочных типов чугуна. В сплаве главная высокопрочная масса с металлической структурой дополняется превосходной формой структуры графита и его распределением.

Сферы использования материала


Механические свойства и химический состав чугуна.
Применение ковкого чугуна нашлось в машиностроении, автомобилестроении, в производстве ж/д вагонов, изготовлении сельхоз оборудования.

Лучшими свойствами для отмеченных сфер применения является перлитный тип. Однако, несмотря на более высокие характеристики, чаше используется черносердечный сплав. Это обусловлено меньшими затратами на его производство.

Только для изготовления деталей, подвергающихся высоким нагрузкам, используют белосердечный материал. К таким изделиям относятся рессоры, детали двигателей и т.д.

Итог

Ковкие чугуны нашли широкое применение в различных областях человеческой жизнедеятельности благодаря своим высоким прочностным свойствам и хорошей коррозионной стойкости.

Они используются для изготовления различных деталей, которые должны выдерживать значительные постоянные и периодические нагрузки.

В зависимости от задач, может использоваться либо ферритный, либо перлитный тип материала. Каждый из них обладает своими достоинствами и недостатками, описанными в данной статье.

https://youtu.be/F6ApHPhpnok

Производство

Основной способ – плавка в доменных печах.

Исходные продукты для доменной переработки:

  • Шихта — железная руда, содержащая металл в виде оксидов ферума.
  • Топливо — кокс и природный газ.
  • Кислород — вдувается через специальные фурмы.
  • Флюсы — химические образования на основе марганца и (или) кремния.

Этапы доменной плавки:

  1. Восстановление чистого железа путем химических реакций железной руды с подаваемым через фурмы кислородом.
  2. Сгорание кокса и образование оксидов карбона.
  3. Науглероживание чистого железа в реакциях с СО и СО2.
  4. Насыщение Fe3C марганцем и кремнием в зависимости от необходимых свойств на выходе.
  5. Слив готового металла в формы через чугунные летки; слив шлака через шлаковые летки.

По завершению рабочего цикла домны получают чугун, шлак и колошниковые газы.

Ковка чугуна - миф или реальность. Свойства ковкого чугуна

Получение ковкого чугуна

Ковкий чугун получается из белых чугунных отливок при длительном томлении. Для его получения пользуются двумя способами: американским и европейским.

Американский способ заключатся в том, что томление производят в песке с температурой 800 – 850 градусов. В этом случае углероды из химически связанного состояния переходят в свободное состояние и в качестве графита располагаются зернами среди чистого железа. В результате чугун становится вязким, поэтому его и называют ковким. В европейском варианте отливки томятся в железной руде с температурой 850 – 950 градусов. Углероды из связанного состояния в результате диффузии с поверхностей отливок переходят в атмосферу. В результате потери углерода отливки снаружи становятся мягкими, и чугун называют ковким. При этом середина сохраняет хрупкость.

Понятие «ковка» для чугуна условно и обозначает только то, что он в сравнении серыми чугунами пластичен. На практике собственно ковка чугуна никогда не происходит. Ковкий чугун применяется для изготовления лишь фасонных отливок для машиностроительной отрасли, наравне с отливками из серого чугуна.

 

Фото: Ковкий чугун — включения хлопьевидного графита (углерода отжига).

После отжига, за счет образовавшегося хлопьевидного углерода, сплав приобретает повышенную прочность, некоторую пластичность и сопротивление ударным нагрузкам, поэтому ковка невозможна. Иногда понятие «ковка» подменяется «обработкой» чугуна или штамповка называется — машинная ковка, что тоже не верно.

В маркировке ковкого чугуна указываются числа, обозначающие средние величины пределов прочности на разрыв в кг на мм2 и удлинения в %. К примеру, марка КЧ 35-10 означает «ковкий чугун, предел прочности которого составляет 35 кг/мм2, а удлинение – 10%.

Механические свойства

ГОСТ 1215-79 регламентирует механические свойства ковкого чугуна. Маркировка и стандартизация основана на принципе регламента допустимого значения механических свойств при растяжении. Твердость сплава зависит в основном от матрицы, а пластичность и прочность – от графита и матрицы.

Ковкие чугуны по своим механическим свойствам находятся в промежутке между сталью и серым чугуном. В отличие от углеродистой стали для них характерна жидкотекучесть, способность поглощения вибрации при циклических нагрузках (демпфирующая способность) и износостойкостью. Ковкий чугун обладает высокими антикоррозийными свойствами, поэтому среда влажного воздуха, топочные газы и вода ему не страшны.

Марки ферритного и перлитного чугуна. Использование

Ковкий чугун бывает двух видов: ферритный и перлитный, в зависимости от способа его получения.

Чугун на изломе бархатистый черного цвета с тонкой серой каймой снаружи. Структура включает феррит или перлит и графит отжига. Из-за черной сердцевины, сплав получил название «черносердечный».

 

Фото Ковкий чугун: феррит и углерод отжига.

По ГОСТу к ферритному чугуну применима следующая маркировка: КЧ 30-6; КЧ 33-8; КЧ 35-10; К 37-12, КЧ 38-10. Металл двух последних марок применяют в автомобильной и сельскохозяйственной отрасли для изготовления деталей, выдерживающих высокие динамические и статические нагрузки — задних мостов для машин, крючков и др. Для менее «ответственных» деталей (гаек, фланцев и др.) используется чугун марок КЧ 30-6, КЧ 33-8, КЧ 35-10.

Прочность ферритного чугуна ниже, чем прочность перлитного чугуна, но второй менее пластичен.

К перлитному чугуну по ГОСТу применяется такая маркировка: КЧ 63-2; КЧ 60-3; КЧ 50-5. Его отличают следующие свойства: высокая прочность и износостойкость. Применение: изготовление вилок карданного вала, звеньев цепи конвейера, муфт и др.

Фото Феррит, перлит и угле­род отжига.

При пониженной температуре ковкий чугун работает удовлетворительно, но становится более хрупким при динамических нагрузках.

Несмотря на разнообразие марок по ГОСТу и применение, материал чаще используется для получения тонкостенного литья с толщиной стенок от 3 до 40 мм.

 

Фото Перлит и углерод отжига.

Химический состав и технологические свойства

ГОСТом химический состав не регламентирован. Он определен требованием к его технологическим свойствам. Свойства ковкого чугуна регулируются процентным содержанием углерода и кремния. А на технологические свойства перлитного чугуна влияют еще и хром, марганец и др.

  • Литейные свойства выражены жидкотекучестью, усадкой, склонностью к образованию горячих трещин. Они достаточно высокие, поэтому ковкий материал характеризуется хорошим литейным материалом.
  • Такое свойство, как жидкотекучесть, очень важно для чугунных отливок ввиду их сложных конфигураций и тонких стенок при малом весе. При повышении содержания фосфора, кремния и углерода она тоже возрастает. Марганец и сера сами по себе на жидкотекучесть влияют слабо, но при увеличенном содержании двух элементов одновременно она понижается.
  • Объемы усадки зависят от технологического процесса изготовления отливок и химического состава металла. В жидком состоянии и при затвердении усадка определяет пористость и возникновение раковин. В твердом состоянии усадка показывает разницу размеров модели и отливки по ней. Общая объемная усадка по ГОСТу определяется во время кристаллизации отливок, когда жидкий металл переходит в твердое состояние и включает объем усадочных раковин и усадочную пористость.
  • Горячие и холодные трещины в отливке возникают в слукция отливок, или низкая податливость стержней и форм.

 

Фото Чугун ковкий.

Обработка

Разные марки по ГОСТу сильно разнятся по обработке, хотя физические и механические свойства могут быть идентичными. Чаще это связано с минимальными структурными различиями. Например, 5-7 процентное включение цементита очень снижает стойкость режущих инструментов в процессе механической обработке, хотя на прочность и твердость ковкого материала почти не влияют. При увеличении пластичности металла сверх нормы вызывает появление наростов на передних гранях инструментов. Это также понижает его стойкость. Такое случается во время обработки ферритного чугуна марки КЧ 35-10, КЧ 37-12. Но основная причина, нарушающая зависимость между прочностью и твердостью с обрабатываемостью, кроется в структурной неоднородности. Особенно это относится к перлитному чугуну. Например, сплав с зернистым перлитом обрабатывается лучше, чем с перлитом крупнопластинчатым, хотя и более твердый.

С повышением содержания кремния и углерода в структуре металла повышается уровень свободного углерода. Соответственно, твердость понижается, обрабатываемость улучшается. Высокая чистота обрабатываемой поверхности достигается при равномерных мелких включениях углерода отжига в металле. Чистота обрабатываемой поверхности у перлитного чугуна выше, чем у ферритного. Это важно для нарезания резьбы. Она получится совершенней на перлитном чугуне, чем на ферритном.

Область применения

Применение ковкого чугуна в качестве конструкционного материала широко используется в разных отраслях машиностроения из-за высоких физико-механических свойств отливок, стабильной и достаточно легкой технологичности производства. А также низкой себестоимости в сравнении со стальными отливками, штамповкой и поковкой. Отливки из чугуна широко применяются в тракторостроении и автомобилестроении, сельхозмашиностроении и других отраслях промышленности.

Машиностроительные заводы производят чаще ферритный и очень немного перлитного, хотя показатели последнего (прочность, износостойкость, усталостная прочность, гашение вибраций, работа при повышенных температурах и др) существенно выше.

Из перлитного чугуна делают детали сцепления, распределительные валы, коромысла для клапанов, поршни для дизельных двигателей и др).

 

Фото Распределительный вал из ковкого чугуна.

Промышленная маркировка

Маркировка чугуна по ГОСТу в промышленности выглядит следующим образом:

  • П1, П2 – марка передельного;
  • ПЛ1, ПЛ2 – для передельного для отливок;
  • ПФ1, ПФ2, ПФ3 – для передельного фосфористого;
  • ПВК1, ПВК2, ПВК3 – для передельного высококачественного;
  • СЧ – для чугуна с пластинчатым графитом.

Маркировка антифрикционного чугуна:

  • АЧС – для антифрикционного серого;
  • АЧВ – для антифрикционного высокопрочного;
  • АЧК – для антифрикционного ковкого.

ВЧ – марка чугуна с шаровидным графитом.

Ч – марка чугуна легированного со специальными свойствами.

Похожие статьи

Чугун ковкий

Рекомендуемые марки чугуна

Детали

Условия работы

Автомобилестроение

Картер редуктора заднего моста, дифференциала, руля; ступицы колес, крон­штейны двигателя, рессор, тормозные колодки, на­кладки; балансиры, катки, барашки, пробки

Сложные переменные динамические (ударные) нагрузки

КЧ 45-7; КЧ 50-5; КЧ 55—4

Ступицы колес, тормозные барабаны, крышки под­шипников коленчатого вала, картеры распределитель­ной коробки, редуктора заднего моста, втулки

Статические и динамиче­ские нагрузки, износ

КЧ 60—3; КЧ 65—3; КЧ 70—2; КЧ 80-1,5

Шатуны, поршни, шестер­ни, коленчатые валы

Высокие статические и динамические нагрузки, износ

Сернистый перлитный чугун

Распределительные валы, направляющие втулки кла­панов, заготовки для на­плавки толкателей

Сильный износ

Обезуглероженный чу­гун

Сварные конструкции — выхлопные коллекторы, карданные валы, крон­штейны и др.

Статические и динамиче ские нагрузки

Тракторное и сельскохозяйственное машиностроение

КЧ 30-3; КЧ 33-8; КЧ 35—10; КЧ 45—7

Шестерни, муфты, храпо­вики, рычаги, звездочки, собачки, ступицы, вилки валов, катки, кронштейны, втулки, звенья цепей, клю­чи, барашки и др.

Изгибающие, скручиваю­щие, растягивающие ста­тические и динамические
нагрузки, износ

Вагоностроение и судостроение

КЧ 33-8; КЧ 35—10; КЧ 37—12; КЧ 45—7

Детали воздушных тормо­зов, кронштейны, скобы, иллюминаторные кольца

Изгиб, ударные нагрузки износ

Электропромышленность

КЧ 35—10; КЧ 45-7

Державки проводов, шап­ки, крючья изоляторов, клеммы и др.

Изгиб, ударные нагрузки

Станкостроение, текстильное машиностроение

КЧ 35-10; КЧ 45—7; АКЧ-1; АКЧ-2

Втулки, вилки, шестерни, банкоброши и др.

Износ, статические идинамические нагрузки

Санитарно-техническое и строительное оборудование

КЧ 33—8; КЧ 35—10 Обезуглероженный чу­гун

Фиттинги, вентили, уголь­ники, радиаторные нип­пели, кронштейны, пневмо­корпуса и др.

Внутреннее давление до
2 МПа

Марки чугуна

Мы производим чугун следующих марок:

Серый чугун согласно PN-EN 1561
  • EN-GJL 200
  • EN-GJL 250
  • EN-GJL 300
  • EN-GJL 350

В диапазоне веса: 500 - 40 000 кг

Серый чугун — популярный материал, используемый, в том числе, в железнодорожной, автомобильной и машиностроительной промышленности, например, из него изготавливают корпуса машин и тормозные барабаны.

Преимуществами серого чугуна являются очень хорошие литейные свойства, хорошая обрабатываемость и обрабатываемость.Он также характеризуется способностью гасить вибрации и относительно низкой себестоимостью производства.

Относительно низкая прочность и низкая пластичность чугуна в сочетании с плохой стойкостью к истиранию и коррозии в химических средах являются основными недостатками серого чугуна.

Ковкий чугун согласно PN-EN 1563
  • EN-GJS 400-18
  • EN-GJS 400-15
  • EN-GJS 400-12
  • EN-GJS 500-7
  • EN-GJS 600-3
  • EN-GJS 700-2

В диапазоне веса: 500 - 30.000 кг

По сравнению с серым чугуном ковкий чугун характеризуется более высокими прочностными и пластическими свойствами, меньшей склонностью к концентрации напряжений, лучшей литейностью, усталостной прочностью и стойкостью к высоким давлениям.

Недостатками ковкого чугуна являются более высокая стоимость производства, низкая теплопроводность и отсутствие остаточных напряжений в отливке.

Чугуны специального назначения:

В диапазоне веса: 500 - 20.000 кг

Чугун специального сплава

– это чугун, в производстве которого используются различные виды добавок для модификации физико-химических свойств, такие как никель, хром, медь, кремний и многие другие. В результате такие чугуны могут характеризоваться, например, высокой термостойкостью, стойкостью к истиранию или действию кислот.

Обозначение чугуна

EN – обозначение стандартного материала;

EN-GJL — серый чугун, EN-GJS — чугун с шаровидным графитом;

G означает литой материал, J — чугун.

Следующая буква определяет форму графита: S - шаровидный графит, L - чешуйчатый графит.

Числовые значения указывают предел текучести в мегапаскалях (МПа) и значение относительного удлинения (в процентах).

Значение графита в литье.

Форма и количество графита, содержащегося в чугуне, существенно влияет на его свойства. Благодаря графиту чугун более устойчив к усталости, обладает лучшими свойствами скольжения, легче режется и снижает литейную усадку материала.Однако следствием повышенного количества графита в чугуне является снижение его прочности на растяжение. Чугун обычно характеризуется высокой коррозионной стойкостью и прочностью.

.

Ковкий чугун

Ковкий чугун

Термин « чугун » охватывает диапазон сплавов железа, углерода и кремния . Обнаруженный в 1940-х годах ковкий чугун является настоящим технологическим новшеством .

Открытие ковкого чугуна

Термин «чугун» охватывает широкий спектр сплавов Fe-C, классифицированных, среди прочего, по форме, в которой углерод присутствует в сплаве.

В сером чугуне углерод присутствует в виде особых графитовых пластин, что делает его хрупким материалом, поскольку графитовые пластины вызывают нарушения структуры чугуна, в результате чего вдоль выравнивания пластин возникают трещины.

В 1943 г. было сделано важное открытие: введение небольших количеств магния в чугун серый привело к тому, что углерод кристаллизовался не в виде чешуек, а в виде графитовых шариков. Так был создан новый материал: чугун с шаровидным графитом .Ковкий графит придает чугуну отличные механические свойства, то есть очень высокую устойчивость к растяжению, трению и ударным нагрузкам. Эти особенности имеют большое значение при монтаже сетей водопровода и канализации .

Ковкий чугун - это материал с совершенно другими, лучшими прочностными характеристиками по сравнению с серым чугуном и неуместно использовать слово "чугун" без различия между этими материалами. Все механические свойства высокопрочного чугуна значительно превышают механические свойства серого чугуна — например, предел прочности при растяжении в 1,68 раза выше, а ударная вязкость более чем в 10 раз выше, чем у серого чугуна.

Небольшой стержень из витого шаровидного железа с удивительными свойствами был привезен в 1949 году из США Жаном КАВАЛЬЕ, членом семьи, основавшей фабрику Pont-à-Mousson . Процесс производства ковкого чугуна был введен в промышленную практику в 1960 году, а с 1970 года все производство серого чугуна было заменено производством ковкого чугуна.

Трубопроводная система Saint-Gobain PAM из ковкого чугуна

Ковкий чугун как материал обладает всеми характеристиками классических строительных материалов.В определенных диапазонах напряжений он является жестким и эластичным и становится эластичным, когда превышает предел текучести. Твердость и вязкость очень высоки для ковкого чугуна во всем диапазоне напряжений.

Используя механические свойства чугуна с шаровидным графитом и гибкие соединения для прокладок из модифицированного каучука EPDM, компания Saint-Gobain PAM создала надежные системы трубопроводов, которые легко адаптируются к любой местности и условиям эксплуатации.Трубы из ВЧШГ на сегодняшний день являются лучшим техническим решением на рынке в диапазоне диаметров от DN 60 до DN 200 мм. Неоспоримым преимуществом ковкого чугуна является тот факт, что механические свойства этого материала остаются неизменными во времени - даже через 100 лет он по-прежнему будет иметь предел прочности R м = 420 МПа.

Ковкий чугун, полученный специальной обработкой магнием, приобретает удивительные механические свойства:

  • Ударная вязкость: Ковкий чугун очень устойчив к повреждениям, вызванным ударами (например,
  • Прочность на растяжение: ковкий чугун имеет очень высокую прочность на растяжение и предел текучести, сравнимый с конструкционной сталью,
  • Овализация: трубы из ковкого чугуна благодаря своей высокой окружной жесткости не не деформируются под действием статических и динамических нагрузок.

Приведенные выше параметры механической прочности чугуна с шаровидным графитом способствуют значительному снижению финансовых затрат на земляные работы при прокладке трубопроводов из материалов с низким пределом текучести.

Благодаря высокой механической прочности материалов и соединений, земляные работы и уплотнение грунта в засыпке требуют меньшего внимания, без ущерба для срока службы трубопровода.

Механические преимущества и условия окружающей среды

Заглубленная труба может подвергаться на неустойчивой местности значительным нагрузкам, вызванным смещением грунта или вымыванием основания трубы. Гибкость чугуна с шаровидным графитом позволяет системам труб нейтрализовать изменения, происходящие в их непосредственной близости, без трещин или утечек.

Zakopane Трубы также подвергаются воздействию вертикальных сил: статических (вес грунта насыпи) и динамических (колесный транспорт). Эти силы деформируют. Поэтому важно выбирать трубы достаточно жесткие и имеющие высокий коэффициент запаса прочности. Такой подход позволяет избежать возможности дорогостоящих отказов в виде трещин, изгибов или чрезмерной овализации, ведущих к потере герметичности соединений.

.

Чугун - типы, сварка, применение, свойства

Свойства чугуна

Чугун - материал с множеством возможностей и широким применением. Хотя он обычно ассоциируется с чугунными радиаторами или кастрюлями, его можно использовать для изготовления многих других изделий. Если вы хотите узнать, что такое чугун и для чего он используется, читайте дальше!

Чугун представляет собой сплав с концентрацией углерода более 2%, и его максимальное содержание непостоянно.Он может быть от 3,8 до даже 6,7%. Кроме того, стоит знать, что чугун образуется в процессе литья и не подвергается пластической обработке.

Что такое чугун и как его производят?

Чугун представляет собой сплав железа с углеродом и очень часто также с кремнием, серой, фосфором или марганцем. Производится в шахтных печах, т.н. купола. Он изготовлен из комбинации чугуна и металлолома. Отдельные детали из чугуна изготавливаются методом литья в формы. Отливки могут иметь самую разнообразную и сложную форму, благодаря тому, что чугун обладает прекрасными литейными свойствами.

Среди наиболее распространенных преимуществ чугуна — его превосходная прочность, высокая стойкость к истиранию, эффективность гашения вибраций, простота литья сложных форм и низкая стоимость производства.

Чугун — это материал, который сотни лет использовался для различных целей. Это один из первых сплавов, который не был найден человеком в виде самородных металлов, но мы научились делать его сами, плавя железную руду.При плавке в расплавленный чугун чаще всего попадал уголь. При плавлении углерод растворялся в жидком азоте и в расплаве углерод вступал в химическую реакцию с железом или образовывал раствор. Учитывая, сколько углерода перешло в расплав при плавке, железо было получено после затвердевания. Чугун был получен, когда во время плавки было введено больше углерода. Было обнаружено, что когда сплав содержит много углерода, он становится более твердым и хрупким. Однако со временем стали отличать чугун от стали, а также получать нужный процент углерода в сплаве.Затем, когда технология значительно развилась, стали разрабатываться все новые и новые виды механической обработки и сварки чугуна.

Типы чугуна

Чугун бывает не менее пяти различных сортов. Ниже мы представим и кратко опишем каждый из них. Среди прочих различаем:

Чугун белый - отличается твердостью и хрупкостью одновременно. Не пригоден для механической обработки (кроме шлифовки).

Серый чугун - его название связано с тем, что в нем присутствует графит.Конечные свойства серого чугуна зависят от формы используемого графита. В случае пыльцы чугун не очень прочен и имеет низкую пластичность.

Легированный чугун - это тип чугуна, который можно комбинировать с различными легирующими добавками, придающими ему особые свойства, такие как коррозионная стойкость и жаростойкость.

Ковкий чугун - это сплав железа и углерода, который образуется в результате затвердевания расплавленной шихты с углеродными частицами, имеющими форму шара.Отличается лучшей прочностью по сравнению с чугуном с пластинчатым графитом. Ковкий чугун является ковким материалом.

Чугун ковкий - в отличие от ковкого чугуна его пластичность достигается термической обработкой, которая называется графитизирующим отжигом.

Применение чугуна

Ниже мы представляем наиболее популярное использование чугуна, разделенного на определенные типы:

Белый чугун - используется для изготовления отливок с высокой стойкостью к истиранию, которые уже не требуют дополнительной механической обработки.Среди них выделяются среди прочих мельничные шары, тормозные колодки или мешалки для сыпучих материалов.

Чугун серый с пластинчатым графитом - в основном используется для создания отливок, не передающих нагрузки, т.е. нагревателей, ванн, умывальников, компонентов печей (дверцы, решетки), а также деталей машин, таких как цилиндры, изложницы или поршни .

Чугун ковкий (ферритная матрица) - используется для изготовления деталей швейных машин, сельскохозяйственных машин и предметов домашнего обихода.

Чугун ковкий (перлитная матрица) - из него изготавливают более нагруженные отливки, например, распределительные валы, коленчатые валы, ключи и шестерни.

Ковкий чугун - используется для производства деталей автомобилей, таких как распределительные валы, компоненты системы рулевого управления и коленчатые валы, а также для производства фитингов, шестерен и шпинделей станков.

Примером использования чугуна являются, например, чугунные ступицы, доступные в магазине EBMiA.pl - https://www.ebmia.pl/1714-piasty-gh-zeliwne

Сварка чугуна

Газовая сварка чугуна представляет собой комбинацию элементов с пламенем и стержнем из присадочного металла. Сварку применяют для соединения металлических и неметаллических деталей, а также сплавов с различной температурой плавления, но их толщина не должна превышать 30 мм. Наиболее распространенным методом сварки является электродуговая сварка чугуна. Благодаря ему расплавленный металл, соединяющий различные элементы, взаимодействует с металлом электрода, что создает прочный шов.Чтобы шов не окислялся, электрод необходимо покрыть специальным защитным покрытием. Это может быть, среди прочего флюс или инертный газ, такой как гелий или аргон. Дуговая сварка - как ручная, так и на полуавтоматических и автоматических аппаратах - позволяет соединять детали из чугуна, меди, конструкционной стали, алюминия и других сплавов. Что касается температуры плавления, то она зависит от углерода, который содержится в материале. Чем выше это содержание, тем ниже температура и выше текучесть при нагревании.

Температура плавления чугуна

Чугун - это сплав железа, в котором, помимо компонентов, в смеси содержатся также стойкие вещества, такие как кремний, сера, марганец, фосфор и присадки. Этот материал может быть разных типов в зависимости от сплава, который определяется структурой излома. Температура плавления чугуна составляет примерно 1200°С, что означает, что она примерно на 300°С ниже, чем температура плавления чистого железа. Также стоит различать серый чугун, температура плавления которого 1260°С, а после заливки в форму - 1400°С, и белый чугун, температура плавления которого 1350°С, а после заливки в форму - 1450°С. С.

Чугун – один из лучших металлов для плавки. Это связано с его малой усадкой и высокой текучестью, что делает его действительно очень эффективным при литье. Интересно, что их бывает около сотни разных видов, и каждый из них отличается по использованию, фактуре и технологии изготовления.

Как сварить чугун?

Сварка чугуна – работа не для дилетантов. Это, несомненно, требует опыта, но для того, кто хотя бы раз соприкасался с обработкой этого материала - это реальный процесс, который необходимо выполнить.Это связано с тем, что в большинстве ситуаций речь идет о ремонте чугунных элементов, а не о соединении их с другими металлами. Ремонт обычно производят в литейном цехе при изготовлении чугунных изделий или для устранения дефектов литья, обнаруженных при обработке. Ремонт необходим, в частности, когда просверленные отверстия расположены не на своем месте.

Проблемы, связанные со сваркой чугуна, возникают из-за его функции. Во-первых, в нем высокое содержание углерода, что вызывает осаждение графита.Они отвечают за серый оттенок чугуна. Во время литья расплавленный чугун заливают в форму, а затем охлаждают. При работе с высоким содержанием углерода медленное охлаждение предотвратит растрескивание материала. Это следует иметь в виду при сварке чугуна.

Из самых популярных способов сварки чугуна различают холодную и горячую сварку. Реже используется метод полупробки.

Сварка чугуна ВИГ

Сварка чугуна ВИГ представляет собой не что иное, как аргонную сварку износостойким вольфрамовым электродом.Существует три основных направления сварки. Первый из них касается ситуации, когда свариваемые элементы соединяются чугунным швом. Второй примерно такой же, но отличается тем, что шов выполнен из низколегированной стали. Третий касается ситуации, когда шов выполнен из цветного металла.

Таким образом, можно с уверенностью сказать, что TIG-сварка железа в аргоне может выполняться с использованием различных составов присадок. Однако стоит иметь в виду, что та же аргонная технология сварки чугуна должна предусматривать нагрев заготовок.Несмотря на то, что часто встречаются добавки, позволяющие варить чугун, не нагревая его.

При наличии незначительных дефектов, например в виде мелких трещин, а также в случае сварки тонких отливок применяют метод ВИГ с применением присадочного металла из никеля, железоникелевых проволок или литья железные стержни.

Холодная сварка чугуна

Горячая сварка не всегда возможна. Это обусловлено, в частности, слишком большой размер детали. В этой ситуации используется холодная сварка, что означает, что деталь охлаждается, но не холодная.Температура деталей повышается примерно до 38°С. Если элемент находится рядом с двигателем, его можно запустить за несколько минут до сварки. Однако стоит иметь в виду, что этот элемент должен быть такой температуры, чтобы к нему можно было прикасаться руками.

При холодной сварке чугуна делают короткие швы длиной не более 2-3 см. Также не забудьте проковать соединение после сварки. Однако перед этим необходимо дождаться, пока сварной шов и детали остынут сами по себе.Их нельзя охлаждать сжатым воздухом или водой. Также стоит следить за тем, чтобы сварка выполнялась в одном направлении и чтобы концы сварных швов не сходились.

Чем сварить чугун

Сварку чугуна чаще всего выполняют инверторными аппаратами MIG и TIG для чугуна. Если речь идет о сварке чугуна методом MIG/MAG, то для этой цели используется мигомат или полуавтомат. И первый, и второй вариант предполагают использование электрической дуги переменного тока и обеспечивают отличное качество сварных швов.Сварка MIG/MAG выполняется плавящимся электродом. В свою очередь, сварка чугуна методом TIG выполняется неплавящимся вольфрамовым электродом в среде инертного газа. В результате могут быть достигнуты очень хорошие результаты сварки. Для этого процесса используется электрическая дуга постоянного тока.

Электроды чугунные

При сварке чугуна в холодном состоянии для получения наилучших возможных результатов необходимо использовать специальные электроды для чугуна, которые содержат в качестве основного компонента никель и/или медь.Никель неограниченно растворяется в железе и не образует карбидов. Благодаря этому не создается зона беленого чугуна, а наплавленный металл отличается низкой твердостью, а также очень просто обрабатывается. Медь также не образует соединений с углеродом, но и не растворяется в железе, а значит, сварочный шов не будет однородным.

На рынке представлен широкий выбор электродов с покрытием для чугуна – как на основе меди, так и на основе никеля.Медно-железные электроды представляют собой медные стержни с покрытием, содержащим железный порошок. В свою очередь никель и железо-никель содержат до 90% и более никеля.

Цена сварки чугуна

Когда речь идет о сварке чугуна для герметичности, ее стоимость колеблется в пределах 350-450 злотых.

В следующих статьях мы описали:

Полиэтилен (ПЭ) - что это такое, применение, свойства

Тефлон - применение и свойства

Типы, состав, свойства, применение бронзы

7

7

7

Латунь - свойства, применение, состав, виды

Медь - что это такое, свойства, применение

.

Ковкий чугун, серый чугун, B1010

Бронза

RG7

ОЛОВЯННАЯ БРОНЗА

ДРУГАЯ МАРКИРОВКА:

PN: RG7 , ZNAK: CUSN7ZNPB , EN: GC-CUSN7ZNPB / CUSN7ZN4PB7 / CC493K , DIN: 2.1090 /.

замена бронза B 555 (CuSn5Zn5Pb5)

Один из наиболее широко используемых бронзовых сплавов.Называется скользящей бронзой, используется на деталях, требующих стойкости к истиранию. Материал хорош в обработке, устойчив к коррозии и морской воде. Используется, например, для втулок и подшипников, работающих при статических нагрузках и нормальных температурах, для подшипников инструментальной и автомобильной промышленности.

Плотность - 8,8 г/см 3

Прочность на растяжение (Rm): мин. 270 МПа
Твердость мин.70 НВ

Химический состав:

Медь 81,0 - 85,0%
Сн 5,6 - 8,0%
Цинк 3,0 - 5,0%
Пб 5,0 - 7,0%
Никель макс. 2,0%
Р макс. 0,2%

GBZ12

ОЛОВО ФОСФОР КОРИЧНЕВЫЙ

ДРУГАЯ МАРКИРОВКА:

PN: GBZ12 , MARK: CuSn12 , EN: GC-CuSn12 / CuSn12-C / CC483K , DIN: 2.1052.04 / 1705

замена бронза B101 (CuSn10P)

Это самосмазывающаяся бронза. Материал устойчив к истиранию, коррозии и морской воде. Обладает очень хорошими свойствами скольжения с высоконагруженными деталями машин, в том числе на высоких скоростях. Применяются, например, для плохо смазываемых и подверженных коррозии подшипников, деталей машин, зубчатых передач и червячных колес. (Более растекаемый, чем Ba1032)

Плотность - 8,8 г/см 3

Прочность на растяжение (Rm): мин.300 МПа
Твердость мин. 90 НВ

Химический состав:

Медь 84,0 - 88,5%
Сн 10,5 - 13,0%
Пб 0,6 - 1,0%
Никель макс. 2,0%
Р макс. 0,4%
прочие остальные

BA1032

КОРИЧНЕВЫЙ АЛЮМИНИЙ

ДРУГАЯ МАРКИРОВКА:

PN: Ba1032 , МАРКА: CuAl10Fe3Mn2 , EN: CW306G , DIN: 2.0936 / 17 665

его замена бронза Ва1054 (CuAl10Ni5Fe4)

Алюминиевая бронза очень устойчива к статическим нагрузкам, коррозии (особенно в растворах кислот) и истиранию. Используется, например, для болтов, тяжелонагруженных деталей машин и двигателей. Используется в связи, авиации, судостроении и химической промышленности.

Плотность - 7,7 г/см 3

Прочность на растяжение (Rm): 500-550 МПа
Твердость 110-120HB

Химический состав:

Медь остальные
Ал 9,0 - 10,5%
Fe 2,0% - 3,8%
Мн 1,2 - 2,0%

BA1054

КОРИЧНЕВЫЙ АЛЮМИНИЙ

ДРУГАЯ МАРКИРОВКА:

PN: Ba1054 , МАРКА: CuAl10Ni5Fe4 , EN: CW307G , DIN: 2.0966 / 17 665

используется вместо Ba1032 (CuAl10Fe3Mn2)

Это один из самых твердых видов бронзы. Обладает высокими прочностными свойствами (в том числе при повышенных температурах), хорошей коррозионной стойкостью, особенно в кислых растворах. Характеризуется высокой устойчивостью к знакопеременным нагрузкам и истиранию. Поддается холодной обработке. Используется, например, для трубных досок теплообменников, валов, винтов, элементов гидравлических устройств, седел клапанов, шестерен.

Плотность - 7,6 г/см 3

Прочность на растяжение (Rm): мин. 700 МПа
Твердость 175 - 193 НВ

Химический состав:

Медь остальные
Ал 9,3 - 11,2%
Fe 3,6 - 5,5%
Никель 3,5 - 5,3%

B6

КОРИЧНЕВЫЙ

ДРУГАЯ МАРКИРОВКА:

PN: B6 , МАРКА: CuSn6 , EN: CW452K , DIN: 2.1020 / 17 662

Оловянная бронза хорошо режется, легко поддается пайке и холодной обработке. Обладает высокой устойчивостью к истиранию и коррозии. Хорошие прочностные и эластичные свойства. Используется, например, для пружин, мембран, бумажных экранов, элементов контрольно-измерительных приборов.

Плотность - 8,8 г/см 3

Прочность на растяжение (Rm): мин. 310 МПа
Твердость мин.80 НВ

Химический состав:

Медь остальные
Сн 5,5 - 7,0%
Р 0,01 - 0,35%

B8

КОРИЧНЕВЫЙ

ДРУГАЯ МАРКИРОВКА:

PN: B8 , МАРКА: CuSn8 , EN: CW453K / CW459K DIN: 2.1030 /17 662

По мере увеличения количества олова упругие и прочностные свойства повышаются от средних (В2) до очень высоких (В8), а коррозионная стойкость и стойкость к истиранию повышаются от средних до высоких. Как и все оловянные бронзы, хорошо режется, поддается холодной штамповке и пайке. Применение: для упругих элементов, износостойких, работающих в морской воде, арматуры.

Плотность - 8,8 г/см 3

Прочность на растяжение (Rm): мин.310 МПа
Твердость мин. 80 НВ

Химический состав:

Медь остальные
Сн 7,5 - 8,5%
Р 0,01 - 0,35%

CuSn12Ni2

ОЛОВО-НИКЕЛЬ-ФОСФОРНАЯ БРОНЗА

ДРУГАЯ МАРКИРОВКА:

МАРКА: CuSn12Ni2 , EN: CC484K , DIN: G-CuSn12Ni / 2.1060 / 1705

Специальная бронза. Для этой марки характерны более высокие механические показатели по сравнению с CuSn12. Устойчив к истиранию, коррозии и морской воде. Используется, например, для горок, гаек.

Плотность - 8,6 г/см 3

Прочность на растяжение (Rm): мин. 300 МПа
Твердость мин. 90 НВ

Химический состав:

Медь 84,0 - 87,0%
Сн 11,0- 13,0%
Цинк 0,4 макс.
Пб 0,3 макс.
Никель 1,5 - 2,5%
Р 0,2 макс.

CuSi3Mn1

СИЛИКОНОВО-МАРГАНЦЕВЫЙ КОРИЧНЕВЫЙ

ДРУГАЯ МАРКИРОВКА:

PN: BK31 , MARK: CuSi3Mn1 , EN: CW116C , DIN: CuSi3Mn1 / 1766 / 2.1525

8

Высокие прочностные характеристики до 300 градусов Цельсия, высокая коррозионная стойкость, подходит для холодной штамповки, хорошо сваривается.Используется, например, для элементов свариваемых конструкций.

Плотность - 8,5 г/см 3

Химический состав:

Медь остальные
Си 2,5 - 3,5%
Мн 1,0 - 1,5%

B1010

КОРИЧНЕВЫЙ

PN: B1010 , МАРКА: CuSn10Pb10 , EN: CC495K , DIN: G-CuPb10Sn / 2.1177

Специальная бронза. Он характеризуется очень хорошей литейностью и обрабатываемостью, устойчив к истиранию. Используется, например, для подшипников и трущихся деталей машин, работающих при высоких давлениях и скоростях.

Плотность - 9,0 г/см 3

Прочность на растяжение (Rm) - 250 МПа

Химический состав:

Медь остальные
Сн 9,3 - 11%
Пб 9,0 - 10,5%

—————————————-

Чугун

Чугун – литейный сплав железа с углеродом и другими элементами (в т.ч.в кремний, марганец, фосфор и сера). Обладает очень хорошими литейными свойствами: низкая температура плавления, хорошая литейность, хорошие прочностные характеристики и обрабатываемость. С другой стороны, он хрупок и не может обрабатываться ни в холодном, ни в горячем виде. Белый чугун представляет собой твердый, хрупкий, устойчивый к истиранию сплав с низкой прочностью на растяжение, но достаточно хорошей прочностью на сжатие. Ковкий чугун получают из белого чугуна. Белый ковкий чугун имеет предел прочности при растяжении в пределах 350-450 МПа, твердость ок.220 НВ и относительное удлинение (А5) около 5%.

GG-25

СЕРЫЙ ЧУГУН (GG25)

Твердый, очень восприимчив к механической обработке и имеет низкую усадку при отливке. В сером чугуне углерод находится в виде чешуйчатого графита, такой чугун более ковкий и с ним легко работать. Марка GG25 обладает высокой способностью гасить вибрацию и устойчива к истиранию.

ПРИМЕР ПРИМЕНЕНИЯ:

люков, воздухозаборников, печных плит и дверей, корпусных отливок, шкивов, шестерен, гильз цилиндров, головок, поршневых колец, картеров, направляющих, паровых турбин.

ДРУГАЯ МАРКИРОВКА :

ДИН ЕН
Марка ГГ25 EN-GJL-250
Старый стандарт ЗЛ-250
Стандартный DIN 1691 ЕН 1561
Номер сплава 0,6025 ЕН-ДЖЛ 1040

Плотность : 7,2 г/см 3

Температура плавления : ок.1200°С

Химический состав:

С 2,90 - 3,65
Си 1,80 - 2,90
Мн 0,50 - 0,70
С макс. 0,10
Р макс. 0,30

Механические свойства:

GGG-40

КОВКИЙ ЧУГУН (GGG40)

Мягкий, углерод в форме сферического графита.Такой чугун имеет очень хорошие механические свойства. Он имеет лучшую стойкость к истиранию, чем серый чугун. Он также более прочный и пластичный.

ПРИМЕР ПРИМЕНЕНИЯ :
зубчатые валы, двигатели внутреннего сгорания, подвески, тормозные диски, коромысла, детали системы рулевого управления и промышленной арматуры, металлургические катки.

ДРУГАЯ МАРКИРОВКА:

ГГГ40 ЕН-ДЖС1030 0,7040 EN-GJS-400-15

Свойства:

Прочность на растяжение 360-400 МПа
Твердость 130-180 НВ
Плотность 7,3 г/см 3

GGG-50

КОВКИЙ ЧУГУН (GGG50)

ДРУГАЯ МАРКИРОВКА:

ГГГ50 ЕН-ДЖС1050 0.7050 EN-GJS-500-7

Свойства:

Прочность на растяжение 420-500 МПа
Твердость 150-240 НВ
Плотность 7,3 г/см 3

GGG-60

SEFREOID IRON (GGG60)

ДРУГИЕ ОБОЗНАЧЕНИЯ:

GGG60 ЕН-ДЖС1060 0.7060 EN-GJS-600-3

Свойства:

Прочность на растяжение 550-600 МПа
Твердость 150-240 НВ
Плотность 7,3 г/см 3

ГГГ-70

ДРУГИЕ ОБОЗНАЧЕНИЯ:

ГГГ70 ЕН-ДЖС1070 0.7070 EN-GJS-700-2

Свойства:

Прочность на растяжение 650-700 МПа
Твердость 235-310 ХБ
Плотность 7,3 г/см 3
Температура плавления 850 - 920 р С

Химический состав:

С 3,40 - 3,85
Си 2,30 - 3,10
Мн 0,10 - 0,30
С макс.0,02
Р макс. 0,10

ВКЛЮЧЕНЫ В ЗАКАЗ

Латунь

Латунь представляет собой сплав меди и цинка. Может содержать добавки других металлов, таких как алюминий, свинец, олово, марганец, железо, хром и кремний. Температура плавления ниже 1000°С (в зависимости от вида). Латунь более устойчива к химическим веществам, чем бронза.

MO58

ДРУГАЯ МАРКИРОВКА:

PN: MO58 , MO58B , DIN: CuZn40Pb2 , EN: CW617N , ISO: CuZn40Pb2

Очень хорошо подходит для горячей штамповки и ковки, но ограниченная способность к холодной обработке.Хорошо режет (чуть менее восприимчив, чем МО58А). Используется, например, для труб, нагревательных элементов, промышленной арматуры и кованых деталей сложной формы.

Плотность - 8,43 г/см 3

Химический состав:

Медь 57,0-59,0%
ПБ 1,6 -2,5%
Алюминий макс. 0,05%
Fe макс. 0,3%
Ni макс. 0,3%
Sn макс. 0,3%
Zn макс. остальные

MO58A

ДРУГАЯ МАРКИРОВКА:

PN: MO58A , DIN: CuZn39Pb3 , EN: CW614N , ISO: CuZn39Pb3

Латунь

МО58А очень хорошо режется, легкообрабатываемый сплав.Применение на элементах, изготовленных различными методами резания, особенно на автоматических станках. Используется для компонентов подшипников и замков, болтов, гаек, кабельных зажимов и т. д.

Плотность - 8,46 г/см 3

Химический состав:

Медь 57,0 - 59,0%
ПБ 2,5 - 3,5%
Алюминий макс. 0,05%
Fe макс. 0,3%
Ni макс. 0,3%
Sn макс. 0,3%
Zn макс. остальные

MO59

ДРУГАЯ МАРКИРОВКА:

PN: MO59 , DIN: CuZn39Pb2 , EN: CW612N , ISO: CuZn39Pb2

Марка MO59 очень хорошо поддается резке и горячей штамповке.Подходит для ковки. Это свинцовый сплав, характеризующийся высокой пластичностью. Для гравировки используются латунные листы CuZn39Pb2. Этот сорт используется, например, в производстве фитингов и других процессах механической обработки.

Плотность - 8,43 г/см 3

Химический состав:

Медь 59 - 60%
Пб 1,6 - 2,5%
Ал макс. 0,05%
Fe макс. 0,3%
Никель 0,3 макс.
Сн 0,3% макс.
Цинк остальные

M63

ДРУГАЯ МАРКИРОВКА:

PN: M63 , DIN: CuZn37 , EN: CW508L , ISO: CuZn37

Очень чувствителен к холодной обработке.Его можно сваривать и паять. Обработка ограничена. Обладает высокой коррозионной стойкостью в большинстве сред. Не подходит для использования с уксусной кислотой, соединениями аммиака, соляной кислотой и азотной кислотой. Идеально подходит для полировки, обладает хорошей тепло- и электропроводностью. Он используется, например, в производстве электрических компонентов и деталей, работающих под давлением, а также в производстве охладителей.

Плотность - 8,44 г/см 3

Химический состав:

90 047 62 - 64% 90 048
Медь
Ni макс. 0,3%
Fe макс. 0,1%
Pb макс. 0,1%
Zn макс. остальные

MC62

ДРУГАЯ МАРКИРОВКА:

PN: MC62 , DIN: CuZn38Sn1 , EN: CW717R , ISO: CuZn38Sn1As

Материал устойчив к коррозии, хорошо поддается механической обработке, устойчив к морской воде.Подходит для пайки и сварки. Обладает хорошей прочностью и жесткостью. Используется для болтов, заклепок, судовых гаек, трубных досок конденсаторов в судовых устройствах.

Плотность - 8,40 г/см 3

Химический состав:

Медь 59-62%
Сн 0,5-1,0%
Pb макс. 0,2%
Ni макс. 0,2%
Fe макс. 0,1%
Как 0,02-0,06
Прочее до 0,2%
.

Чугун 6 9000 1

Чугун представляет собой сплав железа с углеродом с содержанием обычно > 2% С, предназначенный для отливок. Их получают путем переплавки чугуна с добавлением железного и стального лома в вагранке, пламенной печи, электродуговой или индукционной печи. В отечественной промышленности более 85 % отливок изготавливается из чугуна.

Классификация чугуна основана на структуре сплава: в частности, форме углерода и форме графитовых выделений.Однако химический состав важен только в случае чугунов с особыми свойствами. Общая классификация чугуна выглядит следующим образом:

Среди технологических свойств чугуна, определяющих его назначение, следует назвать хорошую текучесть вследствие низкой температуры плавления и редко хорошую текучесть. Литейная усадка белого чугуна такая же, как у стального литья (1,6÷2,1%), а усадка серого чугуна очень мала (0,6÷1,1%).

Обрабатываемость чугунов различна: белые из-за высокой твердости плохо поддаются резке, что ограничивает их применение, серые благодаря графитовым отложениям, покрывающим металлическую матрицу, хорошо режутся. Низкая пластичность и восприимчивость к термическим напряжениям затрудняют сварку чугунов. Отрицательной чертой чугуна является хрупкость из-за наличия цементита в белом чугуне или графита в сером. Поэтому для чугуна наиболее благоприятны напряжения сжатия, затем напряжения изгиба, а наименее благоприятны напряжения растяжения.

Благодаря присутствию графита серый чугун обладает высокой износостойкостью, хорошими свойствами скольжения и низким тепловым расширением. Потому что графит сам по себе обладает смазывающими свойствами, а также впитывает жир и удерживает его на трущихся поверхностях.

Относительно низкая прочность и высокая хрупкость чугуна, а с другой стороны, низкая цена материала на протяжении многих лет вдохновляли исследовательские работы, направленные на улучшение его механических свойств. Эта работа принесла результаты: применение теории кристаллизации привело к разработке модифицированного и высокопрочного чугуна.

Чугун белый (светлый излом) - сплав, в котором все количество углерода связано в виде цементита, согласно метастабильному равновесию системы Fe-Fe 3 С.

В промышленной практике литым называют белый чугун, имеющий одинаковую структуру по всему сечению. Белый чугун твердый (НВ≅550), очень устойчив к истиранию и сохраняет эти свойства до температур, превышающих 400°С, в то время как стали с меньшей стойкостью к истиранию при этих температурах показывают снижение твердости.Для обработки белого чугуна требуются инструменты из карбида вольфрама. В силу своих свойств белый чугун имеет ограниченное применение для изготовления износостойких отливок, не требующих серьезной механической обработки, например футеровок и смесительных шнеков, шаров шаровых мельниц.

Серым чугуном (темный излом) называют сплав, содержащий не более 0,8% связанного С в виде цементита, а оставшуюся часть в виде чешуйчатого графита. В сером чугуне цементит может быть только в виде перлита.Структура серого чугуна зависит в основном от степени графитизации. Для обеспечения дробления графита используется чугун модификации . Модификатор Si вводят в количестве около 0,5% в виде сплавов Fe-Si или Si-Ca. Чугун необходимо предварительно хорошо обессерить карбидом.

Ковкий чугун определяется как обычный или легированный серый чугун, содержащий не более 0,8% углерода, связанного в виде цементита, а остальную часть в виде сферического графита.Таким образом, тип металлической матрицы зависит от степени графитизации. Перлитная матрица имеет оптимальные свойства.

Высокопрочный чугун представляет собой пластифицированный термической или термохимической обработкой чугун, содержащий свободный углерод в виде так называемых светящийся уголь. Структура и свойства ковкого чугуна зависят от способа пластификации.

На испытания мы получили три образца чугуна:

Образцы чугуна исследовали под микроскопом, а образцы из ковкого и серого чугуна подвергались дополнительному травлению.

  1. чугун с шаровидным графитом (нетравленый)

  1. серый чугун (непротравленный)

  1. ковкий чугун (не травящийся)

  1. Ковкий чугун после травления

д) серый чугун после травления

Еще до исследования образцов под микроскопом мы заметили, что поверхности образцов были шероховатыми по сравнению с поверхностями стальных образцов.Поверхности стальных образцов были блестящими, а поверхности чугунных – матовыми. В сером чугуне после травления хорошо видна граница зерен, а также выявляется чешуйчатый графит. На границе зерен фосфорная эвтектика и пластины перлита. После травления образцов из ковкого чугуна помимо сферического графита можно увидеть перлит.


Поисковик

Похожие подстраницы:
МОДИФИЦИРОВАННОЕ ЧУГУН
Чугун, Материаловедение
Чугун
Чугун 5
Чугун 2
Чугун, Исследования, СЕМЕСТР 1, НОМ
Тяга 3 Чугун
Чугун
Чугун Идент. чугун
Часть 6 Ковкий чугун Часть 6
БЕЛЫЙ И СЕРЫЙ ЧУГУН МЕТАЛЛООБРАБОТКА, Исследования, Материаловедение, Металловедение и Основы Термической Обработки
Чугун качественный
Ведомость учета отходов Чугун Сталь
Чугун Piotrek SCIAGI экзамен, Металлургия и литье стальное литье, Сталь
Чугун,
Литая сталь, Сталь
Чугун, 4
Чугун, Сталь
Iron Science 4
чугун ADI

больше похожих страниц

.

Чугунные трубы - руководство - Vademecum для студентов техникума

Свойства и типы чугуна

ЧУГУН - железоуглеродистый сплав, содержащий 2,5-4,5% С и других элементов (Si, Mn, P, S), предназначенный для изготовления деталей машин, промышленного оборудования и бытовых изделий методом литья.

РАЗДЕЛ ЧУГУНА - В зависимости от формы угля различают чугуны:

белый (светлый прорыв), в котором углерод находится в виде цементита; они имеют ограниченное применение; в санузлах из белого чугуна дверки для печей изготавливаются

серый — с графитом (серый излом), в котором углерод существует в основном в виде графита и частично связан в виде цементита в перлите; они широко используются; по форме частиц графита различают чугуны с чешуйчатым графитом, пластичные и ковкие;

половинка (пестрая) - углерод в виде цементита и графита

Рис.1 Диаграмма Маурера, показывающая, какая структура должна быть создана в чугунной отливке толщиной 50 мм в зависимости от содержания углерода и кремния.

Рис. 2 Диаграмма Грейнера-Кингенштейна, показывающая, какой должна быть структура чугуна в зависимости от толщины отливки и общего содержания углерода и кремния.

Белый чугун

Структура белого чугуна соответствует диаграмме фазового равновесия железо-цементит. В зависимости от содержания углерода и легирующих добавок, присутствующих в углеродистом чугуне, различают чугуны с доэвтектической, эвтектической или заэвтектической структурой.

Зная химический состав углеродистого чугуна с учетом влияния легирующих элементов на содержание углерода в эвтектике, можно приблизительно оценить структуру чугуна путем расчета так называемого углеродный эквивалент C E :

C E = (% C всего ) + 0,33 (% P) + 0,30 (% Si)

С Е равное 4,3 % — чугун эвтектический, С Е менее 4,3 % — доэвтектический чугун, а С Е более 4,3 % — заэвтектический чугун.Основными конструктивными элементами белых чугунов являются:

- цементит первичный,

- ледебурит преобразованный,

- перлит.

Первичный цементит встречается в заэвтектических чугунах в виде белых зерен, светлых игл или пластинок в матрице преобразованного ледебурита.

Преобразованный ледебурит , встречающийся во всех белых чугунах, имеет дендритный характер, и при срезе перпендикулярно дендритным ветвям перлит появляется в виде темных крошечных точек.Дендритный характер структуре ледебурита придает первичный цементит. Ледебурит представляет собой структурный компонент, твердый (HB = 450), хрупкий и трудно поддающийся резке. Перлит встречается в доэвтектических чугунах и преобразованном ледебурите. В доэвтектических чугунах он имеет вид темных участков между ледебуритовыми полями. При большем увеличении можно наблюдать пластинчатую структуру перлита.

Белый чугун представляет собой твердый и хрупкий сплав. Высокая твердость и соответствующая стойкость к истиранию являются результатом присутствия значительного количества цементита в белом чугуне.Прочность на растяжение белого чугуна невелика, но он обладает значительной (в 4-6 раз выше) прочностью на сжатие. Чистый цементит в зависимости от размера зерен, пластин или игл и количества растворенного в нем марганца имеет твердость

.

в пределах 700-840 НВ. Преобразованный ледебурит, содержащий в своей структуре, кроме первичного цементита, еще и перлит (или бейнит), имеет твердость в пределах 440-510 HB в зависимости от твердости первичного цементита и степени дисперсности цементита в перлите.Гипетктические белые чугуны имеют твердость в пределах от 280 HB для перлитной структуры с вторичным цементитом и следами ледебурита до примерно 450 HB - для ледебуритной структуры с небольшим количеством перлита

Полулитой чугун

В полулитом чугуне углерод присутствует как в связанной форме в виде первичного цементита в ледебурите, так и в свободной форме в виде графита. Следовательно, получугун обычно имеет структуру, состоящую из графита, перлита и превращенного ледебурита.Структуру получугуна можно обнаружить в отливках из серого чугуна, поверхность которых забелена для повышения сопротивления истиранию поверхности отливки. В этом случае полулитая структура возникает в переходном слое между поверхностью из белого чугуна и сердцевиной из серого чугуна. Твердость полулитого чугуна колеблется от примерно 240 HB до примерно 400 HB.

Серый чугун

В сером чугуне большая часть углерода находится в свободной форме - графите.Цементит может присутствовать в перлите или в виде вторичного цементита. Свойства серого чугуна зависят от количества, размера, формы и распределения графита и типа металлической матрицы. По типу матрицы серый чугун подразделяется на:

- ферритный,

- Ферритно-перлитный,

- перлитный.

Ферритная матрица имеет более низкую твердость и прочность на растяжение, чем перлитная матрица. Однако в то время как твердость серого чугуна практически равна твердости его металлической матрицы, прочность чугуна также зависит от типа графита, присутствующего в сером чугуне.

Графит имеет очень низкую прочность и низкий модуль упругости, что вызывает разрывы в упругой металлической матрице, поэтому серый чугун обладает способностью гасить вибрации. Чем больше графита в матрице и чем больше выделяется его чешуек, тем лучше способность гасить колебания. Однако крупночешуйчатый графит вызывает весьма значительное ослабление металлической матрицы и является причиной низкой прочности такого чугуна. Повышение прочности чугуна можно получить за счет измельчения частиц графита.Это достигается за счет так называемого модификация чугуна путем добавления в желоб или в ковш дополнительного компонента - модификатора, которым может быть ферросилиций, ферромарганец, кальций-кремний или алюминий. Чугун, полученный таким образом, ранее назывался модифицированным чугуном, а теперь именуется качественным серым чугуном.

Серый ферритный чугун имеет предел прочности при растяжении около 100 МПа и твердость около 100-120 HB. Серый перлитный чугун с крупночешуйчатым графитом достигает прочности прибл.250 МПа, с твердостью около 220 HB. Путем модифицирования можно получить перлитный чугун с прочностью до 450 МПа и твердостью 220-260 НВ. Кроме графита, феррита и перлита в структуре серого чугуна могут присутствовать две специфические структурные составляющие: сульфиды марганца и эвтектика фосфора. Сульфиды марганца проявляются в виде полигонов матовой окраски как в зернах феррита, так и в полях перлита.

Ковкий чугун

Особое положение среди серых углеродистых чугунов занимает чугун с шаровидным графитом .Их получают модификацией церемонами или магниевыми сплавами чугуна, которые без этой модификации сгустятся как белые или полутвердые. Этот чугун характеризуется наиболее высокими прочностными свойствами и низкими пластическими свойствами, так как сфероидальные выделения графита не образуют крупных несплошностей в металлической матрице. По той же причине чугун с шаровидным графитом имеет значительно меньшую способность гасить вибрацию, чем чугун с крупночешуйчатым графитом.

Ферритный ковкий чугун имеет предел прочности при растяжении до прибл.450 МПа и твердость 140-180 HB. Он проявляет определенные пластические свойства, достигая значения относительного удлинения (A 5 ) примерно до 10%.

Перлитный ковкий чугун имеет прочность примерно до 700 МПа, твердость 260-300 HB и относительное удлинение (A 5 ) примерно 2%. Характерной структурной деталью, наблюдаемой на образцах перлитного высокопрочного чугуна, являются каймы из зерен феррита вокруг сфероидальных частиц графита.

Рис.Структура ВЧ, площадь 200x

Ковкий чугун

Ковкий чугун — материал, получаемый путем соответствующей термической обработки белого чугуна. При длительном отжиге белого чугуна можно в определенных интервалах температур получить разложение первичного цементита и выделение графита в характерную концентрированную форму - так называемую светящийся уголь. В зависимости от способа графитизирующего отжига различают:

- чугун белый ковкий, полученный после отжига белого чугуна в окислительной атмосфере с выгоранием угля;

- черный ковкий чугун, получаемый после отжига белого чугуна в инертной атмосфере, доводя процесс графитизации до конца, т.е.разложение цементита, содержащегося в перлите;

- Чугун ковкий перлитный, полученный после отжига белого чугуна в инертной атмосфере без завершения процесса графитизации, т.е. только разложения первичного и вторичного цементита, находящихся в равновесии с аустенитом.

Изломы белого ковкого чугуна имеют матово-белый цвет на поверхности, соответствующий ферритной структуре, плавно переходящий в серебристый вблизи центра стенки отливки, что соответствует перлитной структуре.

Черный ковкий чугун Изломы серые по всей поверхности, структуры ферритовые со следами неразложившегося перлита и люминофора.

Излом перлитного ковкого чугуна серебристого цвета с черными точками; структура представляет собой перлит или другой продукт распада аустенита и горячий уголь. Вокруг люминесцентных частиц углерода имеются характерные каймы, образованные зернами феррита.

Рис. Структура черного ковкого чугуна.Гравировка ниталом, площадь 500x

Белый ковкий чугун имеет предел прочности при растяжении в диапазоне 350-450 МПа, твердость около 220 HB и относительное удлинение (А5) около 5%. Черный ковкий чугун имеет Rm = 300-350 МПа, твердость 170-190 HB и относительное удлинение до 15%. Перлитный ковкий чугун имеет прочность до 750 МПа, твердость 220-280 НВ и относительное удлинение от 2 до 7%.

Легированный чугун

Легированные чугуны со специальными свойствами можно разделить на следующие группы:

- износостойкий,

- коррозионностойкий,

- термостойкий,

- с высоким электрическим сопротивлением.

Многие марки легированного чугуна обладают несколькими из этих свойств одновременно.

Чугун, стойкий к истиранию

Практически все белые чугуны являются чугунами с хорошей стойкостью к истиранию, но их применение ограничено из-за низкой прочности и высокой хрупкости. Снижение хрупкости белого чугуна может быть достигнуто введением добавки около 5% никеля и увеличением содержания марганца, что приводит к ледебуритно-аустенитной структуре.Добавление примерно 2% хрома с низким содержанием марганца приводит к ледебуритно-мартенситной структуре с твердостью примерно 600 HB. Подобным образом добавки хрома и никеля создают мартенситную структуру в сером чугуне.

К износостойким чугунам

относятся также аустенитные, марганцевые и высоконикелевые чугуны. Эти чугуны имеют аустенитную структуру с выделениями графита и ледебуритовыми карбидами, которые, помимо стойкости к истиранию, придают им способность гасить вибрации.

Важнейшую группу среди износостойких чугунов составляют высокохромистые чугуны с ледебуритно-аустенитной структурой с содержанием хрома до 18%, а с содержанием хрома 24-30% - ферритной структуры с выделениями первичного и ледебуритовые карбиды.

Коррозионностойкий чугун

Углеродистые чугуны относительно устойчивы к химическим веществам. Вводя такие добавки, как: кремний, кремний с молибденом, хром, хром с никелем, хром с молибденом или хром с алюминием, эти сопротивления можно значительно увеличить.Наиболее устойчивыми к коррозии на практике являются высококремнистые, никелевые и хромистые чугуны.

Чугун с высоким содержанием кремния, содержащий 14-18% Si, в основном устойчив ко всем кислородным кислотам. Благодаря добавлению 3-4% молибдена они также устойчивы к хлороводороду и горячим кислотам. Структура этих чугунов ферритная с частицами графита, также возможно выделение небольшого количества ледебурита. Силиконовые чугуны имеют очень низкую прочность на растяжение (ок.100 МПа) и довольно значительной твердости (320-460 HB).

Высоконикелевые аустенитные чугуны характеризуются значительной стойкостью как к кислотам, так и к концентрированным щелочам. Они чаще всего имеют структуру, состоящую из аустенита, графита и карбидов, которые помимо антикоррозионных свойств сохраняют способность гасить вибрации и устойчивы к истиранию (особенно при повышенном содержании углерода).

Чугуны высокохромистые обладают, помимо стойкости к истиранию, хорошими антикоррозионными свойствами, причем для достижения этих свойств содержание углерода в чугунах может быть ниже (1,2-2%), чем в случае, когда наибольшая абразивность требуется сопротивление.

Жаропрочный чугун

Обычные чугуны не устойчивы к температурам выше 250°С, так как при многократном нагревании в них может графитизироваться цементит, вызывающий напряжения. Второй причиной образования напряжений является весьма значительная структурная неоднородность чугуна и связанная с этим разность коэффициентов термического расширения отдельных фаз.

Наиболее распространенными легирующими элементами в жаропрочном чугуне являются хром, никель и алюминий.Кроме них используются добавки кремния, молибдена и меди. Высоконикелевые чугуны обычно имеют аустенитную структуру или, при меньшем содержании никеля, аустенитно-мартенситную с выделениями графита. Они в целом ничем не отличаются от коррозионностойких чугунов. Высокохромистые чугуны имеют такую ​​же структуру, как и высокохромистые, устойчивые к истиранию, при этом наибольшая жаростойкость (до 1200°С) получена у чугунов, содержащих около 1,5 % С и 35 % Cr. При содержании алюминия 8 и 25 % алюминиевый чугун имеет структуру серого чугуна, а при содержании Al 16 % — структуру белого чугуна.

Чугун сопротивления

Чугун, используемый для нагревательных элементов, очень хрупкий. По сравнению с пластически обработанными материалами, они обладают гораздо более высокой стойкостью. Удельное сопротивление чугуна зависит в основном от содержания кремния и углерода, и сопротивление увеличивается с увеличением этого содержания. Кремниевые резистивные чугуны имеют ферритную структуру, а никель-хромовые чугуны - аустенитную.

.

Водопроводные трубы нового поколения из ВЧШГ. микроструктура и свойства - 31 225

Настройки файлов cookie

Здесь вы можете определить свои предпочтения в отношении использования нами файлов cookie.


Требуется для работы страницы

Эти файлы cookie необходимы для работы нашего веб-сайта, поэтому их нельзя отключить.

Функциональный

Эти файлы позволяют использовать другие функции сайта (кроме необходимых для его работы). Включив их, вы получите доступ ко всем функциям веб-сайта.

Аналитический

Эти файлы позволяют нам анализировать наш интернет-магазин, что может способствовать его лучшему функционированию и адаптации к потребностям Пользователей.

Поставщики аналитического программного обеспечения

Эти файлы используются поставщиком программного обеспечения, под которым работает наш магазин.Они не объединяются с другими данными, введенными вами в магазине. Целью сбора этих файлов является выполнение анализа, который будет способствовать разработке программного обеспечения. Вы можете прочитать больше об этом в политике использования файлов cookie Shoper.

Маркетинг

Эти файлы позволяют нам проводить маркетинговую деятельность.

.

Смотрите также