8 (913) 791-58-46
Заказать звонок

Ток отключения автоматического выключателя


Ток Отключения и «Неотключения» Автоматического Выключателя

Понятие ток неотключения автоматического выключателя мало кому знакомо. Люди ошибочно полагают что, установив автомат на 16 Ампер он обязательно сработает при 16-ти Амперной нагрузке. На самом деле это не так.

Все это связано с ВТХ – время-токовыми характеристиками. В данной статье уважаемые читатели сайта «Электрик в доме» я постараюсь пояснить, почему так важно учитывать этот параметр при выборе автоматов.

Электрический ток протекает только по замкнутой цепи. Если её разорвать, действие тока будет прекращено. На этом свойстве строится защита электрических линий с помощью автоматических выключателей. При аварийном режиме в электрической цепи возникает ток срабатывания автомата, на который реагируют тепловой или электромагнитный расцепители, разрывая контролируемую цепь.

Для бесперебойного и надёжного питания потребителей, подбирают выключатели, длительно выдерживающие номинальный ток или ток отключения автомата.

Токи не отключения автомата могут привести к аварийной ситуации, например, к возгоранию электрической проводки в вашем доме. Поэтому, для безопасности, помимо правильного определения сечения кабеля, важен точный расчёт номинала автомата, выбор которого проводят, учитывая ток не отключения автоматического выключателя.

О чем говорят время-токовые характеристики

О работе автоматических выключателей судят по время-токовым характеристикам (ВТХ), определяющим точный период срабатывания защитного устройства. Наверняка, вы сталкивались с тем, что в маркировке автоматов участвуют буквенные обозначения: B, C, D.

Это ВТХ автоматических выключателей, ток мгновенного их срабатывания. Другими словами, это наименьший ток, при котором автоматический выключатель разорвет цепь без задержки времени (ГОСТ 50345-2010, п. 3.5.17). Так работает его электромагнитная защита (реагирующая на ток короткого замыкания).

Рассмотрим время-токовую характеристику С. На графике видно, как зависит от тока, проходящего через автомат, время его срабатывания. Вертикально расположенная ось У (ординат) показывает время (секунды).

 

Горизонтальная ось Х (абсцисс) – отражает отношение тока в цепи к номинальному току коммутационного аппарата (I/In). Простыми словами это параметр показывает загруженность (перегруз) автоматического выключателя.

График представлен в виде двух кривых, показывающих временной диапазон действия теплового и электромагнитного расцепителя автомата.

Расположенная сверху кривая определяет холодное состояние, когда автомат предварительно не включался. Кривая, расположенная ниже, характеризует горячее состояние, когда автомат уже был включен в сеть и (или) произошло его защитное срабатывание.

Ток условного «неотключения» автомата - 1,13•In

Ток не отключения автоматического выключателя. Что это такое и откуда он берётся? Рассмотрим ВТХ защитного устройства - автомата. На оси Х (абсцисс), отражающей кратность тока нагрузки в цепи к номинальному току (I/In), находим цифру - 1,13.

Из этой точки вверх проводим вертикальную линию. (На рисунке, расположенном ниже, линия выделена красным цветом.)

Ищем точки пересечения этой линии с кривой времени срабатывания автомата. Видим, что таких точек нет. Делаем вывод, что автомат не сработает, если в цепи будет ток, превышающий номинальный в 1,13 раз .

Автоматические выключатели, пропуская через себя ток, превышающий их номинальный в 1,13 раз, должны поддерживать работу цепи на протяжении целого часа (ГОСТ 50345). При невыполнении этого условия, устройства автоматической защиты бракуются.

Условный ток не расцепления любого автомата составляет 1,13•In. При такой токовой нагрузке устройство защиты не отключается:

  1. 1 час у автоматов с номиналом менее 63 А;
  2. 2 часа у автоматов с номиналом более 63 А.

На графиках времятоковых характеристик автоматических выключателей производителями отмечается точка условного не расцепления (1,13•In).

Если через эту точку провести вертикальную прямую, становится видно место её пересечения с нижней кривой на участке 60-120 минут. К примеру, при прохождении тока 1,13•In = 11,3 (А) через автомат, номинал которого составляет 10 А, его тепловой расцепитель не разомкнёт цепь на протяжении 1 часа.

Так же, при прохождении тока 1,13•In = 18,08 (А) через автомат номиналом 16 А в течение 1 часа не сработает его тепловой расцепитель.

Ниже приведены значения токов условного не расцепления для автоматических выключателей различного номинала:

Номинальный ток автомата (Ампер) Ток неотключения (перегруз 13 %)
6 6,78
10 11,3
16 18,08
20 22,6
25 28,25
32 36,16
40 45,2

В соответствии с времятоковыми характеристиками, автоматы не будут срабатывать при прохождении через них токов, указанных в правом столбце. Это особенно важно, если в вашей сети возможно подключение большой нагрузки, а электропроводка устарела, изоляция проводов нарушена, монтажные работы были проведены некачественно.

Тогда ток не отключения автомата возрастёт, а сечение отходящего кабеля может оказаться недостаточным для создавшейся нагрузки. Поэтому, старайтесь выбрать защитное оборудование и сечение проводников с оправданным запасом. Чтобы не заниматься каждый раз расчетами, обращайтесь к представленной ниже информации.

Ток условного расцепления (отключения) - 1,45•In

Какой же ток отключения автомата? Продолжим анализировать время-токовую характеристику. На горизонтальной оси, находим следующее за 1,13 значение. Это число 1,45. Из этой точки проводим вертикаль, видим её пересечение с графиком в 2 местах.

На кривой, расположенной ниже, место пересечения - 40 секунд. На кривой, расположенной сверху – 60-120 минут, в зависимости от номинала автомата. Для защитных устройств с номинальным током менее 63 А на отключение уйдёт не более 1 часа. А для устройств с номинальным током выше 63 А для этого потребуется 2 часа.

Автоматический выключатель номиналом 10 А способен, не срабатывая в продолжение 1 часа, выдерживать нагрузку 14,5 А. Автомат номиналом 16 А на протяжении этого же времени способен удерживать нагрузку 23,2 А. Это при условии холодного их состояния в начале работы. Если защитное устройство было горячим, на его отключение потребуется от 40 секунд до 1 часа.

Ниже приведены токи условного расцепления для автоматических выключателей разного номинала:

Номинальный ток автомата (Ампер) Ток отключения в течении 1 часа (перегруз 45 %)
6 8,7
10 14,5
16 23,2
20 29
25 36,25
32 46,4
40 58

О чём нельзя забывать при расчете сечения кабеля для электропроводки (смотри выше).

Представим, что в сети нашего дома необходимо защитить проводку сечением 2,5 кв. мм. Многие пользователи идут на поводу у неграмотных электриков и устанавливают для этого 25 А автомат (аргумент у них как правило один – «чтобы не выбивало»).

Если посмотреть по таблицам ГОСТ 31996—2012 допустимый ток для такого сечения кабеля с ПВХ изоляцией то он составляет 27 Ампер.

В случае увеличения нагрузки на 45 % (36.25А), автомат может не срабатывать в течение 1 часа. Всё это время по проводнику будет протекать ток, значительно превышающий длительно допустимый (25 А). Это может привести к нагреванию и разрушению изоляции провода, возникновению пожароопасной ситуации или к короткому замыканию.

Ситуация усугубляется тем, что недобросовестные производители в последнее время занижают сечение жил.

Вывод

Из представленного выше видно, как много нужно времени для того, чтобы сработал ток отключения автомата, даже если он будет намного больше номинального. При неправильном выборе сечения провода, его изоляция за это время может расплавиться.

Это приведёт к возникновению аварийной ситуации.

Я еще раз об этом напомнил, чтобы подчеркнуть насколько важно, при каком токе отключается автомат в вашем доме и правильно выбрать номинал этого защитного устройства. Не менее важно провести грамотный расчет сечения проводов (кабеля) и сделать выбор с достаточным запасом.

Хочу еще отметить низкое качество современной электротехнической продукции. Повсеместно продаются китайские изделия. Такой товар лучше не покупать. Приобретайте автоматические выключатели у добросовестных производителей.

Похожие материалы на сайте:

Понравилась статья - поделись с друзьями!

 

Время-токовые характеристики (ВТХ) автоматических выключателей

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Вы наверное замечали, что на корпусах модульных автоматов изображены латинские буквы: B, C или D. Так вот они обозначают время-токовую характеристику этого автомата, или другими словами, ток мгновенного расцепления.

Согласно ГОСТа Р 50345-99, п.3.5.17 - это наименьшая величина тока, при котором автоматический выключатель сработает (отключится) без выдержки времени, т.е. это его электромагнитная защита.

В этом же ГОСТе Р 50345-99, п.5.3.5, говорится, что всего существует три стандартные характеристики (типы мгновенного расцепления):

  • B — электромагнитный расцепитель (ЭР) срабатывает в пределах от 3 до 5-кратного тока от номинального (3·In до 5·In)
  • C — (ЭР) срабатывает в пределах от 5 до 10-кратного тока от номинального (5·In до 10·In)
  • D — (ЭР) срабатывает в пределах от 10 до 20-кратного тока от номинального (10·In до 20·In, но встречаются иногда и 10·In до 50·In)

In – номинальный ток автоматического выключателя.

Помимо характеристик типа В, С и D, существуют и не стандартные характеристики типа А, К и Z, но о них я расскажу Вам в следующий раз. Чтобы не пропустить выход новых статей, подписывайтесь на рассылку сайта.

Рассмотрим каждый вид характеристики более подробно на примере модульных автоматических выключателей ВМ63-1 серии OptiDin и Optima от производителя КЭАЗ (Курский Электроаппаратный завод).

 

Время-токовая характеристика типа В

Рассмотрим время-токовую характеристику В на примере автоматических выключателей ВМ63-1 от КЭАЗ. Один автомат с номинальным током 10 (А), а другой — 16 (А).

Обратите внимание, что оба автомата имеют характеристику В, что отчетливо видно по маркировке на их корпусе: В10 и В16.

Для наглядности с помощью, уже известного Вам, испытательного прибора РЕТОМ-21 проверим заявленные характеристики данных автоматов.

Но сначала несколько слов о графике.

Вот график время-токовой характеристики (сокращенно, ВТХ) типа В:

На нем показана зависимость времени отключения автоматического выключателя от протекающего через него тока. Ось Х — это кратность тока в цепи к номинальному току автомата (I/In). Ось У — время срабатывания, в секундах.

Запомните!!! Время-токовые характеристики практически всех автоматов изображаются при температуре +30°С. 

График разделен двумя линиями, которые и определяют разброс времени срабатывания зон теплового и электромагнитного расцепителей автомата. Верхняя линия — это холодное состояние, т.е. без предварительного пропускания тока через автомат, а нижняя линия — это горячее состояние автомата, который только что был в работе или сразу же после его срабатывания.

Пунктирная линия на графике — это верхняя граница (предел) для автоматов с номинальным током менее 32 (А).

1. Токи условного нерасцепления (1,13·In)

У каждого автомата есть такое понятие, как «условный ток нерасцепления» и он всегда равен 1,13·In. При таком токе автомат не отключится в течение 1 часа (для автоматов с номинальным током менее 63А) и в течение 2 часов (для автоматов с номинальным током более 63А).

Точку условного нерасцепления автомата (1,13·In) всегда отображают на графике. Если провести прямую, то видно, что прямая уходит как бы в бесконечность и с нижней линией графика пересекается в точке 60-120 минут.

Например, автомат с номинальным током 10 (А). При протекании через него тока 1,13·In = 11,3 (А) его тепловой расцепитель не сработает в течение 1 часа.

Еще пример, автомат с номинальным током 16 (А). При протекании через него тока 1,13·In = 18,08 (А) его тепловой расцепитель не сработает в течение 1 часа.

Вот значения «токов условного нерасцепления» для различных номиналов:

  • 10 (А) — 11,3 (А)
  • 16 (А) — 18,08 (А)
  • 20 (А) — 22,6 (А)
  • 25 (А) — 28,25 (А)
  • 32 (А) — 36,16 (А)
  • 40 (А) — 45,2 (А)
  • 50 (А) — 56,5 (А)

2. Токи условного расцепления (1,45·In)

Есть еще понятие, как «условный ток расцепления» автомата и он всегда равен 1,45·In. При таком токе автомат отключится за время не более 1 часа (для автоматов с номинальным током менее 63А) и за время не более 2 часов (для автоматов с номинальным током более 63А).

Кстати, точку условного расцепления автомата (1,45·In) практически всегда отображают на графике. Если провести прямую, то видно, что прямая пересекает график в двух точках: нижнюю линию в точке 40 секунд, а верхнюю — в точке 60-120 минут (в зависимости от номинала автомата).

Таким образом, автомат с номинальным током 10 (А) в течение часа, не отключаясь, может держать нагрузку порядка 14,5 (А), а автомат с номинальным током 16 (А) — порядка 23,2 (А). Но это при условии, что автоматы изначально были в холодном состоянии, в ином случае время их отключения будет находиться в пределах от 40 секунд до одного часа.

Вот значения «токов условного расцепления» для различных номиналов:

  • 10 (А) — 14,5 (А)
  • 16 (А) — 23,2 (А)
  • 20 (А) — 29 (А)
  • 25 (А) — 36,25 (А)
  • 32 (А) — 46,4 (А)
  • 40 (А) — 58(А)
  • 50 (А) — 72,5 (А)

Вот об этом не стоит забывать при выборе сечения проводов и кабелей для электропроводки (вот Вам таблица в помощь).

Вот представьте себе, что кабель сечением 2,5 кв.мм Вы защищаете автоматом на 20 (А). Вдруг по некоторым причинам Вы перегрузили линию до 29 (А). Автомат 20 (А) может не отключаться в течение целого часа, а по кабелю будет идти ток, который в значительной мере превышает его длительно-допустимый ток (25 А). За это время кабель сильно нагреется и расплавится, что может привести к пожару или короткому замыканию. А если еще учесть то, что в последнее время производители кабельной продукции преднамеренно занижают сечения жил, то ситуация тем более усугубляется.

В принципе, выбор номиналов автоматических выключателей это отдельная тема для статьи. Я лишь привел здесь одну из наиболее распространенных ошибок. Если интересно, то почитайте мою статью, где я подробно разбирал ошибки одного горе-электрика и переделывал за ним его «творчество».

Лично я рекомендую защищать кабели следующим образом:

  • 1,5 кв.мм — защищаем автоматом на 10 (А)
  • 2,5 кв.мм —  защищаем автоматом на 16 (А)
  • 4 кв.мм —  защищаем автоматом на 20 (А) и 25 (А)
  • 6 кв.мм —  защищаем автоматом на 25 (А) и 32 (А)
  • 10 кв.мм — защищаем автоматом 40 (А)
  • 16 кв.мм — защищаем автоматом 50 (А)

Для удобства все данные я свел в одну таблицу:

Проверить рассмотренные автоматы на токи условного нерасцепления и условного расцепления у меня нет времени, поэтому перейдем к их дальнейшей проверке — это форсированный режим проверки при токе, равном 2,55·In.

3. Проверка теплового расцепителя при токе 2,55·In

Согласно ГОСТа Р 50345-99, п.9.10.1.2 и таблицы №6, если через автоматический выключатель будет проходить ток, равный 2,55·In, то он должен отключиться за время не менее 1 секунды из горячего состояния и не более 60 секунд из холодного состояния (для автоматов с номинальным током менее 32А) и не более 120 секунд из холодного состояния (для автоматов с номинальным током более 32А).

На графике ниже Вы можете видеть, что нижний предел по отключению взят с небольшим запасом, т.е. не 1 секунду, а 4 секунды. На то есть право у производителей автоматов. Вот поэтому они всегда к каждому автомату прикладывают свою ВТХ, которая, естественно, что удовлетворяет всем требованиям ГОСТа Р 50345-99.

Проверим!

Автомат ВМ63-1 от КЭАЗ с номинальным током 10 (А) при токе 25,5 (А) должен отключиться за время не менее 1 секунды из горячего состояния и не более 60 секунд из холодного состояния.

Первый раз автомат отключился за время 14,41 (сек.), а второй раз — 11,91 (сек.).

Автомат ВМ63-1 от КЭАЗ с номинальным током 16 (А) при токе 40,8 (А) должен отключиться за время не менее 1 секунды из горячего состояния и не более 60 секунд из холодного состояния.

Первый раз автомат отключился за время 13,51 (сек.), а второй раз — 7,89 (сек.).

Дополнительно можно проверить тепловой расцепитель, например, при двухкратном токе от номинального, но в рамках данной статьи я этого делать не буду. На сайте имеется уже достаточно статей про прогрузку различных автоматических выключателей, как бытового, так и промышленного исполнения. Вот знакомьтесь:

4. Проверка электромагнитного расцепителя при токе 3·In

Согласно ГОСТа Р 50345-99, п.9.10.2.1 и таблицы №6, если через автоматический выключатель будет проходить ток, равный 3·In, то он должен отключиться за время не менее 0,1 секунды. Верхний предел по времени ГОСТом Р 50345-99 не определен, и у автоматов разных производителей здесь может наблюдаться не большой разброс в пределах от 1 до 10 секунд.

Странно, конечно, ведь речь идет об электромагнитном расцепителе и он должен срабатывать без выдержки времени. Но тем не менее, при токе 3·In электромагнитный расцепитель еще не срабатывает и по факту автомат отключается от теплового расцепителя. Вот именно поэтому измеренное значение петли фаза-ноль

сравнивают с током не 3·In, а с 5·In, учитывая коэффициент 1,1.

Автомат ВМ63-1 от КЭАЗ с номинальным током 10 (А) при токе 30 (А) должен отключиться за время не менее 0,1 секунды.

Первый раз автомат отключился за время 8,71 (сек.), а второй раз — 8,11 (сек.).

Автомат ВМ63-1 от КЭАЗ с номинальным током 16 (А) при токе 48 (А) должен отключиться за время не менее 0,1 секунды.

Первый раз автомат отключился за время 8,16 (сек.), а второй раз — 6,25 (сек.).

5. Проверка электромагнитного расцепителя при токе 5·In

Согласно ГОСТа Р 50345-99, п.9.10.2.1 и таблицы №6, если через автоматический выключатель будет проходить ток, равный 5·In, то он должен отключиться за время менее 0,1 секунды.

Автомат ВМ63-1 от КЭАЗ с номинальным током 10 (А) при токе 50 (А) должен отключиться за время менее 0,1 секунды.

Первый раз автомат отключился за время 7,8 (мсек.), а второй раз — 7,7 (мсек.).

Автомат ВМ63-1 от КЭАЗ с номинальным током 16 (А) при токе 80 (А) должен отключиться за время менее 0,1 секунды.

Первый раз автомат отключился за время 8,5 (мсек.), а второй раз — 8,4 (мсек.).

Как видите, оба автомата полностью соответствуют требованиям ГОСТа Р 50345-99 и заявленным характеристикам завода-изготовителя КЭАЗ.

Кому интересно, как проходила прогрузка автоматов, то смотрите видеоролик:

Автоматы с характеристикой В применяются для защиты распределительных и групповых цепей с большими длинами кабелей и малыми токами короткого замыкания преимущественно с активной нагрузкой, например, электрические печи, электрические нагреватели, цепи освещения.

Но почему-то в магазинах их количество всегда ограничено, т.к. по мнению продавцов наиболее распространенными являются автоматы с характеристикой С. С чего это вдруг?! Вполне логично и целесообразно для групповых линий цепей освещения и розеток применять именно автоматы с характеристикой типа В, а в качестве вводного автомата устанавливать автомат с характеристикой С (это один из вариантов). Так хоть каким-то образом будет соблюдена селективность, и при коротком замыкании где-нибудь в линии вместе с отходящим автоматом не будет отключаться вводной автомат и «гасить» всю квартиру. Но о селективности я еще расскажу Вам более подробно в другой раз.

 

Время-токовая характеристика типа С

Вот ее график:

Автоматы с характеристикой С применяются в основном для защиты трансформаторов и двигателей с малыми пусковыми токами. Также их можно использовать для питания цепей освещения. Нашли они достаточно широкое распространение в жилом фонде, хотя свое мнение об этом я высказал чуть выше.

Внимание! Более подробнее про время-токовую характеристику С читайте в моей отдельной статье.

Время-токовая характеристика типа D

График:

По графику видно следующее:

1. Токи условного нерасцепления (1,13·In) и токи условного расцепления (1,45·In), но о них я расскажу чуть ниже.

2. Если через автоматический выключатель будет проходить ток, равный 2,55·In, то он должен отключиться за время не менее 1 секунды в горячем состоянии и не более 60 секунд в холодном состоянии (для автоматов с номинальным током менее 32А) и не более 120 секунд в холодном состоянии (для автоматов с номинальным током более 32А).

3. Если через автоматический выключатель будет проходить ток, равный 10·In, то он должен отключиться за время не менее 0,1 секунды.

4. Если через автоматический выключатель будет проходить ток, равный 20·In, то он должен отключиться за время менее 0,1 секунды.

Автоматы с характеристикой D применяются в основном для защиты электрических двигателей с частыми запусками или значительными пусковыми токами (тяжелый пуск).

 

Изменение характеристик расцепления автоматов

Как я уже говорил в начале статьи, все характеристики изображаются при температуре окружающего воздуха +30°С. Поэтому, чтобы узнать время отключения автоматов при других температурах, необходимо учитывать следующие поправочные коэффициенты:

1. Температурный коэффициент окружающего воздуха — Кt.

Думаю тут все понятно из графика. Чем ниже температура воздуха, тем значение коэффициента больше, а значит и увеличивается номинальный ток автомата, другими словами, его нагрузочная способность. Или, наоборот, чем жарче, тем нагрузочная способность автомата становится меньше. Ведь не зря, в жарких помещениях или летнюю жару многие замечают частые отключения автоматов, хотя нагрузка вовсе не изменялась. Ответ кроется в этом графике.

2. Коэффициент, учитывающий количество рядом установленных автоматов — Кn.

Здесь тоже никаких премудростей нет. Когда в одном ряду установлено несколько автоматов, то они передают свое тепло рядом стоящим автоматам. Этот график учитывает конвекцию тепла и выдает корректирующий коэффициент, учитывающий этот фактор.

Логика проста. Чем больше в ряду автоматов, тем больше уменьшается их нагрузочная способность.

Далее необходимо найти ток, приведенный к условиям нашего окружающего воздуха и монтажа:

In* = In · Кt · Кn

Как эти два коэффициента применить на практике?

Для этого рассмотрим пример. Щиток стоит на улице, в нем установлены 4 автомата — один вводной (ВА47-29 С40) и три групповых (ВА47-29 С16). Температура окружающего воздуха составляет -10°С.

Найдем поправочные коэффициенты для группового автомата ВА47-29 С16:

Найдем ток, приведенный к нашим условиям:

In* = In · Кt · Кn = 16 · 1,1  · 0,82 = 14,43 (А)

Таким образом, при определении времени срабатывания автомата по характеристике С кратность тока нужно брать не как отношение I/In (I/16), а как I/In* (I/14,43).

 

Заключение

Все вышесказанное в данной статье я представлю в виде общей таблицы (можете смело копировать ее и пользоваться):

Если Вы заметили, то разницей между время-токовыми характеристиками В, С и D являются только значения срабатывания электромагнитного расцепителя. По тепловой защите они работают в одних интервалах времени.

P.S. Надеюсь, что после прочтения данной статьи Вы сможете самостоятельно определять пределы времени срабатывания любых автоматических выключателей, а также правильно рассчитывать сечения проводов под номиналы автоматов.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Как не оконфузиться при выборе автоматического выключателя / Хабр

Краткая заметка по поводу выбора автоматических выключателей. Искренне надеюсь, что читатель не узнает для себя ничего нового.

У поста есть видеоверсия на моем ютуб канале. Реалии времени заставляют меня делать еще и видео:

Определимся с целью

Для начала нужно определиться - для чего нам автоматический выключатель в электрощите. Задача автоматического выключателя - прежде всего защитить стационарную кабельную линию от протекания токов свыше предельно допустимых. Если ток превышен - то проводники нагреваются, с плавлением и разрушением изоляции или расплавлением самих проводников. И если не случится пожара, то случится дорогостоящий ремонт, с работами по замене замурованной в стенах электропроводки. А ток может быть превышен, если к линии подключили слишком много потребителей (происходит перегрузка) или если происходит короткое замыкание.  Неправильный выбор характеристик автоматического выключателя - путь к дорогостоящему ремонту, а при особенной везучести - к пожару.

Номинальный ток

Поняв, что автоматический выключатель должен защитить кабельную линию от протекания тока свыше допустимого, мы должны понять, какой же ток допустимый. Чаще всего ссылаются на вот эту табличку из ПУЭ (таблица 1.3.4):

Но, на мой субъективный взгляд, у этой таблички есть существенный недостаток, и он указан в источнике - эта табличка составлена для окружающей температуры +25, температуры земли +15 и температуры жилы (!!!) +65. Длительная работа изоляции при повышенной температуре ускоряет процесс старения полимеров, поэтому мое личное мнение - указанные в таблице цифры стоит уменьшить хотя бы на 1/4. Если кабель проложен таким образом, что его охлаждение затруднено, то предельно допустимый рабочий ток также уменьшают. Например если кабель расположен в пучке с другими кабелями или под слоем теплоизоляции.

И вот в этом месте подходим к самой неочевидной вещи. В таблице указаны предельно допустимые токи, а на автоматических выключателях указан номинальный ток. Номинальный ток автоматического выключателя, указанный  на нем - это ток, который может длительно проходить через автоматический выключатель и не вызывать его отключения. Для определения тока отключения заглянем в документацию, в график время-токовых характеристик:

Но это график конкретного экземпляра автоматического выключателя. В реальном мире, у автоматических выключателей есть разброс характеристик, даже у выключателей взятых из одной коробки. Поэтому на графике изображена область, в которой  окажется характеристика случайно взятого автоматического выключателя.

В результате, если взять определенный ток, то мы получим диапазон значений времени, за которое сработает автоматический выключатель. От и до, как например вот здесь:

Думаю  очевидно, что в расчетах стоит полагать, что нам попался самый плохой экземпляр, и берется самое худшее значение.

В автоматическом выключателе есть два расцепителя - тепловой, который достаточно точный, но медленный, и электромагнитный - очень быстрый, но неточный.  (В посте (https://serkov.su/blog/?p=5563) я разбирал, как к такому пришли, и почему лучше пока ничего не придумали.) В итоге получается нелинейная зависимость времени срабатывания от протекающего тока. Для наглядности возьмем автоматический выключатель, на котором указан номинальный ток 16А. При перегрузке будет работать тепловой расцепитель:

До тока в 1,13 от номинального, расцепления совсем  не произойдет (16*1,13=18,08А)

При токе в 1,45 от номинального тепловой расцепитель сработает, но за время менее 1 часа (!). (16*1,45=23,2А)

При токе в 2,55 от номинального тепловой расцепитель сработает за время менее 60 сек. (16*2,55= 40А)

При превышении тока еще сильнее - сработает электромагнитный расцепитель, но об этом чуть позже.

Все это становится понятнее, если взглянуть на график:

Откуда взялись эти магические цифры? Из стандарта (у нас в стране - ГОСТ 60898-1-220). Просто разработчики условились, что разброс параметров срабатывания расцепителей должны быть в этих пределах. Причем скорее всего взяли просто две удобные точки времени - 1 час и 1 минута, и воспользовались статистическими данными, чтобы получить кратности номинального тока.

Ну и чтобы совсем жизнь мёдом не казалась, стоит добавить, что в зависимости от температуры окружающей среды применяют коэффициенты. На жаре тепловой расцепитель прогревается и срабатывает быстрее, а вот на морозе наоборот.

А теперь сценарий везунчика по жизни. В частный дом заходит кабель, сечением 1,5 мм2. Щиток с автоматическим выключателем находится в холодном предбаннике, когда на улице мороз -35. Кабель от щитка идет через стену под слоем утеплителя. Автоматический выключатель на 16А почти час (!) будет пропускать ток в (16*1,45*1,25(поправочный на температуру, рис.4) = 29А. При 19А по табличке из ПУЭ у нас жилы будут горячими - +65С, а под слоем утеплителя изоляция уже начнет плавиться.

Еще раз резюмирую: Номинальный ток автоматического выключателя НЕ РАВЕН предельно допустимому току кабеля. Предельный ток кабеля должен вызывать отключение автоматического выключателя в адекватное время.

Тип электромагнитного расцепителя

Тепловой расцепитель медленный, что плохо при коротком замыкании - токи могут быть огромными, и даже за одну секунду могут наделать бед. Поэтому в конструкцию автоматического выключателя добавили электромагнитный расцепитель, который срабатывает за доли секунды. Но он настроен на ток в разы превышающий номинальный.

Дело в том, что некоторые виды потребителей при включении потребляют ток в разы, превышающий ток в рабочем режиме. Например мотор в пылесосе в момент включения кратковременно потребляет ток в 2-3 раза больший, но после разгона мотора, потребление снижается. Возможно вы замечали, как лампочки накаливания слегка притухают в момент включения чего-то как раз из-за этого. Вот график потребления тока мотора пылесоса:

Чтобы эти пусковые токи не заставляли сработать электромагнитный расцепитель, его характеристику сдвинули в зону бОльших токов, что бы такие кратковременные превышения тока были в зоне теплового расцепителя, который в силу своей инерционности такие краткосрочные процессы не замечает.

В итоге получилась линейка автоматических выключателей с одинаковыми тепловыми расцепителями, но с разными электромагнитными. Из-за огромного разброса параметров электромагнитных расцепителей - получились большие разбросы кратности тока срабатывания:

Характеристика В - электромагнитный расцепитель сработает при превышении тока в 3-5 раз

Характеристика С - электромагнитный расцепитель сработает при превышении тока в 5-10 раз

Характеристика D - электромагнитный расцепитель сработает при превышении тока в 10-20 раз

Вот они на графике:

Есть и другие характеристики (K, Z и т.д) но встречаются крайне редко и под заказ, поэтому опустим их.

Если по какой-то причине стартовые токи кратковременно попадут в зону действия электромагнитного расцепителя то возможны ложные срабатывания. И именно для исключения таких ложных срабатываний и сделали несколько типов характеристик.

Некоторые производители для упрощения указывают стартовые токи, вот например светодиодный драйвер уважаемой фирмы при включении кушает солидные 55А (из-за зарядки конденсатора в блоке питания), производитель даже сразу посчитал, сколько светодиодных драйверов можно подключить параллельно на один автоматический выключатель:

4 штуки с характеристикой В и 7 штук на автомат с характеристикой С. Кто бы мог подумать, что 150 ватт светодиодного света могут вышибать 16А автомат! Ситуация становится еще хуже, если используются некачественные светодиодные светильники,  где производитель не только не  предусмотрел плавный старт, да даже пусковой ток не регламентирует!

Если используется большое количество светодиодных светильников - то придется делить их на группы, чтобы одновременный пуск не вызывал срабатывание автоматического выключателя. Пытливый читатель задастся вопросом - а почему бы не взять просто автоматический выключатель  с характеристикой "C" или "D"? Тогда бы пусковые токи не вызывали бы ложных срабатываний! Но не все так просто....

Ток короткого замыкания

Можно иногда услышать выражение "сопротивление цепи фаза-нуль", оно по сути про то же. Ток короткого замыкания - это величина тока в цепи, в случае если из-за повреждения случается короткое замыкание (прямое соединение фазного проводника и нейтрального, или соединение фазного и заземления) в самом дальнем участке. В идеальном мире с идеальными проводниками ток короткого замыкания был бы бесконечным. Но в реальном мире кабели имеют собственное сопротивление, и чем они длиннее  тоньше - тем выше их собственное сопротивление. При обычной работе это не так важно - их собственное сопротивление много меньше сопротивления нагрузки. Но если случится короткое замыкание, ток будет ограничен именно этим собственным сопротивлением всех проводников в цепи + внутреннее сопротивление источника тока.

А теперь смотрим. В деревне Вилларибо измеренный ток короткого замыкания линии 278 Ампер, и электрик поставил автоматический выключатель С16:

Как видим все отлично - при коротком замыкании тока будет достаточно, чтобы электромагнитный расцепитель сработал. А вот в деревне Вилабаджо очень плохая проводка, и ток короткого замыкания всего 124 А. Смотрим на график:

В самом худшем случае, электромагнитный расцепитель типа "С" сработает при токе в 10 раз больше номинального (16*10=160А). А значит при 124А возможна ситуация, когда электромагнитный расцепитель при коротком замыкании не сработает, а пока тепловой расцепитель успеет сработать - по линии будет гулять ток в 124А, что может закончиться плохо. В таком случае деревне Вилабаджо нужно или менять проводку, чтобы уменьшить потери, или использовать автоматический выключатель типа В16, у которого электромагнитный расцепитель сработает в худшем случае при токе 5*16=80А. Теперь вы понимаете, почему характеристика типа D (10-20 *Iном) в некоторых случаях изощренный способ стрелять себе в ногу?

Как же определить ток короткого замыкания? Для  проектируемых линий его можно расчитать - длина кабеля известна, сечение тоже. Для линий уже находящихся в эксплуатации - только измерять, поскольку никто не знает, на что пришлось пойти электрикам при ремонте поврежденных участков.

Для определения тока короткого замыкания есть специальные приборы. Показывать современные не интересно, поэтому покажу суровый советский олдскул, который есть у меня. М-417 измеряет сопротивление цепи путем измерения падения напряжения на известном сопротивлении, а ток короткого замыкания необходимо рассчитывать:

Щ41160, творение сумрачного советского гения.  Устраивает короткое замыкание на доли секунды и измеряет ток непосредственно. В коричневой коробочке на проводе - предохранитель на 100А.:

Как правило, ток короткого замыкания измеряют при введении линии в эксплуатацию, и планово, раз в несколько лет. Только после измерения тока короткого замыкания можно сказать, правильно ли подобрана защита.

Ток короткого замыкания равен ...Oh shi....

Если ток короткого замыкания будет черезчур большим? Вот тут мы сталкиваемся с отключающей способностью автоматического выключателя.  В момент размыкания контактов выключателя загорается электрическая дуга, которая сама по себе проводит ток и гаснет неохотно. Для ее принудительного разрушения в конструкции автоматических выключателей предусмотрены дугогасительные камеры. Вот здесь на высокоскоростной съемке видно как работает дугогасительная камера:

На автоматическом выключателе в прямоугольной рамке нанесена величина  отключающей способности в амперах - это максимальный ток, который способен разомкнуть автоматический выключатель без поломки. Вот на фото автоматические выключатели с отключающей способностью в 3000, 4500, 6000 и 10000 А:

Для наглядности я их разобрал. Большая отключающая способность заставляет не только делать дугогасительные камеры больше, но и усиливать другие конструктивные части, например защиту от прогара вбок.

Отключающая способность автоматического выключателя должна быть больше тока короткого замыкания в линии. Как правило, 6000 А достаточно для большинства применений. 4500А обычно достаточно для работы в линиях старых домов, но может быть недостаточным в новых сетях.

Коммутационная стойкость

При каждом включении/отключении автомата меж контактов загорается дуга, которая постепенно разрушает контактную группу. Производитель часто указывает количество циклов включения/отключения, который должны выдержать контакты:

Отсюда легко видеть, что автоматический выключатель не замена нормальному выключателю при частом использовании. Если пожадничать, и вместо пускателя с контактором  заставить сотрудника включать/отключать мешалку дергая автомат по 10 раз в  день, то автомат может прийти в негодность менее чем за пару лет. Вот фото автоматического выключателя, контакты которого пришли в негодность из-за большого тока:

Помните, каждая коммутация и срабатывание автоматического выключателя "съедает" его ресурс.

Класс токоограничения

Наверное самая мистическая характеристика. Указывается в виде цифры в квадратике. Про нее в рунете написано мало и чаще ерунда. Класс токоограничения, если упрощать, говорит о количестве электричества, которое успеет пройти через автоматический выключатель при коротком замыкании прежде, чем он отключит цепь, и  говорит о быстродействии. Всего классов три:

Что интересно, отечественными стандартами класс токоограничения не регламентируется, поэтому на картинке выше нет кириллицы. Цифры в таблице - это величина интеграла Джоуля. Отечественные производители указывают класс просто потому что "так принято", а не того требуют отечественные стандарты :)  В быту на данный параметр можно не обращать внимание - классы хуже третьего встречаются в продаже не часто.

Селективность

Вам бы не хотелось, чтобы при перегрузке или коротком замыкании срабатывал автоматический выключатель где-то на столбе у ввода в дом. При последовательном соединении автоматов защиты, подбором их характеристик можно добиться селективности - свойству срабатывать защите ближайшей  к повреждению, без срабатывания вышестоящей. И у меня две новости.

Хорошая - можно воспользоваться специальными таблицами, которые есть у многих производителей, и подобрать пары автоматических выключателей, которые при перегрузке будут обеспечивать селективность. На графике это видно как непересекающиеся графики работы  расцепителей:

Но по графику вы могли понять, что плохая новость - обеспечить полную селективность автоматических выключателей при коротком замыкании затруднительно. Кривые пересекаются в области больших токов. Поэтому чаще всего речь о частичной селективности. Например, если синий график - автомат В10, а фиолетовый В40, то ток селективности составит 120А (значение взято из таблиц одного производителя для конкретной модели автоматов). Тоесть при токах меньше тока селективности - все отлично. При токах больше - сработать могут оба устройства защиты.

В бытовой серии модульных автоматических выключателей обеспечивать селективность, даже частичную, довольно трудно. Лишь большие и мощные устройства защиты, например на подстанциях, имеют тонкие настройки уставок расцепителей для обеспечения селективности с вышестоящими устройствами защиты.

Да скажи уже что ставить!?

Прежде всего то, что предусмотрено проектом.

Ну а если уж совсем среднестатистический случай с кучей оговорок, то:

Линия 1,5 мм2 - Автомат В10 с отключающей способностью 6000А

Линия 2,5 мм2 - Автомат В16 с отключающей способностью 6000А

Применение автоматического выключателя с характеристикой "C" или "D" вместо "B" должно иметь вескую причину.

Плюшки

Автоматические выключатели разных производителей могут содержать разные приятности/полезности, которые напрямую на защитные функции не влияют, но могут быть полезны:

Это различные шторки/колпачки/крышечки для пломбирования вводного автомата по требованию электросетевой компании.

Это визуальный индикатор фактического состояния контактов, такой индикатор останется красным, если контакты из-за перегрузки сварились

Это окошки для дополнительных нашлепок с электромагнитными расцепителями, контактами

Это дополнительное окошко у клемм для использования гребенки при подключении

и прочее и прочее.

Резюме

  1. Номинальный ток автоматического выключателя не равен предельно допустимому для кабеля!  В силу особенностей конструкции автоматический выключатель может длительное время пропускать через себя токи значительно больше номинальных и не отключаться.

  2. Разные типы электромагнитных расцепителей позволяют избежать ложных срабатываний, но использовать тип С, и в особенности тип D нужно понимая что к чему.

  3. Если ток короткого замыкания в вашей линии мал - то использование автоматического выключателя требует вдумчивого подхода.

  4. Если ток короткого замыкания в вашей линии огромен, то отключающая способность автоматического выключателя должна быть еще больше.

  5. А чтобы знать ток короткого замыкания, его нужно измерить специализированным прибором. И только после измерения можно сказать, будет ли правильно работать  защита

Хочу сказать спасибо всем, кто принимал участие в рецензировании черновика. Буду рад указаниям на фактические ошибки в статье и ценным дополнениям.

Выбор автоматического выключателя по параметрам сети, подключенной нагрузке (мощности), по току, по сечению провода. Конструктивные элементы и особенности эксплуатации автоматов.

Старая версия статьи здесь

Автоматические выключатели одновременно выполняют функции защиты и управления: защищают кабели, провода, электрические сети и потребителей от перегрузки и короткого замыкания (сверхтоков короткого замыкания), а также обеспечивают нормальный режим протекания электротока в цепи и осуществляют управление участками электроцепей.

Автоматические выключатели выполняют одновременно функции защиты и управления, бывают однополюсные, двухполюсные, трехполюсные и четырехполюсные.

Автоматы имеют защитные (спусковые) устройства двух типов: тепловое реле с выдержкой времени для защиты от перегрузки и электромагнитное реле для защиты от короткого замыкания.

Основные конструктивные узлы автоматических выключателей: главная контактная система, дугогасительная система, привод, расцепляющее устройство, расцепители и вспомогательные контакты. Расцепители представляют собой реле прямого действия, служащее для отключения автоматического выключателя (без выдержки времени или с выдержкой) через механизм свободного расцепления, который в свою очередь состоит из рычагов, защелок, коромысел и отключающих пружин.

 


Только правильно выбранный автоматический выключатель сможет защитить Вас и сработает в случае аварии или при опасной нагрузке на вашу электропроводку. Неверный выбор может привести к пожару или поражению электрическим током.

Не рекомендуется применять "автомат" с видимыми повреждениями корпуса, а также устанавливать автоматические выключатели с завышенным номинальным током срабатывания. Нужно выбирать автоматический выключатель строго под параметры вашей электропроводки и потребителей, только известных производителей и желательно в специализированных магазинах.

Выбираются автоматические выключатели по номинальному току, напряжению и по условиям эксплуатации (исходя из типа исполнения). Если необходимо выбрать автомат для подключения известных нагрузок необходимо рассчитать ток. Автоматический выключатель также должен отключить напряжение при коротком замыкании.

Характеристики срабатывания (отключения) и эксплуатации установлены в европейских стандартах на автоматические выключатели: DIN VDE 0641 часть 11/8.92, EN 60 898, IEC 898 (DIN – Немецкий промышленный стандарт, VDE – Технические правила Общества немецких электриков, EN – Европейский стандарт, IEC – Международная электротехническая комиссия) и в российском стандарте ГОСТ Р 50345-99.

Согласно данным стандартам защитные устройства могут быть трех характеристик срабатывания:

    • Автоматический выключатель с характеристикой срабатывания B рекомендуется применять преимущественно для защиты оборудования, кабелей и цепей в жилых домах (как правило, цепи освещения и розеток)
    • Автоматический выключатель с характеристикой срабатывания C рекомендуется применять  для защиты оборудования, кабелей и цепей в жилых домах (цепи освещения и розеток), а также для защиты цепей с потребителями, обладающими большим пусковым током (группы ламп, электродвигатели и т.д.)
    • Автоматические выключатели с характеристикой срабатывания D преимущественно применяются для защиты кабелей и цепей с потребителями с очень большим пусковым током (сварочные трансформаторы, электродвигатели и т.д.)

Стоит отметить, что подавляющее большинство автоматов на российском рынке предлагается с характеристикой С, с характеристикой B продаются как правило автоматы на малые токи, остальные поставляются в основном под заказ.

 


Согласно стандарту DIN VDE 0100 часть 430/11.91 и его приложений (для устройств защиты кабелей и электрических цепей от перегрузки), защита от чрезмерного нагрева (тепловая защита) в случае перегрузки обеспечивается, если выполняются следующие условия:

    • Потребляемый ток цепи должен быть меньше или равным номинальному току автоматического выключателя, который в свою очередь должен быть не больше, чем максимально допустимая нагрузка электрической цепи или кабеля (Ib<=In<=Iz)
    • Номинальный ток срабатывания автоматического выключателя (для защиты от перегрузки по току) должен быть примерно в 1,5 раза меньше, чем максимально допустимая нагрузка электрической цепи или кабеля (In<=1,45*Iz)

где Ib – потребляемый ток цепи, нагрузка
Iz – допустимая нагрузка электрической цепи или кабеля
In – номинальный или заданный ток устройств защиты от чрезмерного тока

Определить максимальный ток, который выдерживает проводка можно с помощью программы по выбору сечения провода по нагреву и потерям напряжения или по таблицам ПУЭ (Правил устройства электроустановок).

 

 
Характеристики срабатывания автоматических выключателей B и C согласно DIN VDE 0641 и D согласно IEC 947-2

 

Параметры срабатывания линейных защитных автоматов согласно DIN VDE 0641 и IEC 60 898

 

 Характеристика срабатывания  Тепловое реле  Электромагнитное реле
 Малый испытательный ток  Большой испытательный ток  Время срабатывания  Удерживание  Срабатывание Время срабатывания
 B  1,13*In    > 1час  3*In   > 0,1 с
   1,45*In  < 1час    5*In < 0,1 с
 C  1,13*In    > 1час  5*In   > 0,1 с
   1,45*In  < 1час    10*In < 0,1 с
 D  1,13*In    > 1час  10*In   > 0,1 с
   1,45*In  < 1час    20*In < 0,1 с

 

То есть при перегрузке до 13% номинального тока, автоматический выключатель должен отключиться не ранее, чем через час (т.е. выдерживать перегрузку 13% минимум в течение часа), а при перегрузке до 45%, тепловое реле должно отключить "автомат" в течение часа.

Трехкратную перегрузку автоматический выключатель с характеристикой B должен как минимум выдерживать 0,1 секунду, а при пятикратной перегрузке встроенное электромагнитное реле должно отключить автоматический выключатель менее чем за 0,1 секунду.

Из всего этого видно, что номинальный ток выбранного Вами автоматического выключателя, как минимум, не должен превышать допустимых токовых нагрузок для Вашей электропроводки, поэтому, приобретая автоматические выключатели, будьте внимательны с выбором тока. Если Вам продавец советует выбрать автоматический выключатель с током не менее 25А, чтобы при включенном холодильнике, обогревателе, стиральной машине и т.п. его не выбивало, то помните, что в большинстве квартир проводка выполнена из алюминия сечением 2.5 мм2, а такой провод выдерживает максимум 24А. В этом случае единственным разумным решением будет не включать одновременно, например, микроволновую печь и электрочайник или стиральную машину, а не заменять автомат 16А на 25А. Не забывайте, что автоматический выключатель должен выполнять свое основное предназначение - защищать Вашу сеть от перегрузок.

Аналогичным образом подбирается и номинальный ток для дифференциального автомата (так как он объединяет в себе УЗО и автоматический выключатель) - выбор дифференциального автоматического выключателя.

При использовании в цепи постоянного тока характеристики срабатывания теплового расцепителя остаются теми же, что и в сетях переменного напряжения. А характеристики максимального испытательного тока электромагнитного расцепителя изменятся.

Значения максимального испытательного тока электромагнитного расцепителя.

 

 

 

Характеристика выключения

B

C

D

АС/50 Гц (переменный ток)

DC (постоянный ток)

АС/50 Гц (переменный ток)

DC (постоянный ток)

АС/50 Гц (переменный ток)

Минимальный испытательный ток

3,0*In

3,0*In

5*In

5*In

10*In

Максимальный испытательный ток

5,0*In

7,5*In

10*In

15*In

20*In


Допустимая нагрузка на автоматические выключатели
, установленные в ряд один за другим

Поправочный коэффициент (K) в случае взаимного теплового влияния автоматических выключателей, установленных рядом друг с другом, при расчетной нагрузке.

 Число автоматических выключателей  Коэффициент К
 1  1
 2...3  0,95
 4...5  0,9
 ≥6  0,85


Влияние окружающей температуры на тепловое срабатывание автоматического выключателя (приведенные в столбце 30°С токи соответствуют номинальным токам автоматического выключателя, так как при этой температуре задается режим срабатывания). В таблице приведены уточненные значения расчетного тока в зависимости от окружающей температуры.

 

In (А) 30°С 35°С 40°С 45°С 50°С 55°С 60°С
0,5 0,5 0,47 0,45 0,4 0,38 - -
1 1 0,95 0,9 0,8 0,7 0,6 0,5
2 2 1,9 1,7 1,6 1,5 1,4 1,3
3 3 2,8 2,5 2,4 2,3 2,1 1,9
4 4 3,7 3,5 3,3 3 2,8 2,5
6 6 5,6 5,3 5 4,6 4,2 3,8
10 10 9,4 8,8 8 7,5 7 6,4
16 16 15 14 13 12 11 10
20 20 18,5 17,5 16,5 15 14 13
25 25 23,5 22 20,5 19 17,5 16
32 32 30 28 26 24 22 20
40 40 37,5 35 33 30 28 25
50 50 47 44 41 38 335 32
63 63 59 55 51 48 44 40

 

См. каталог:
Модульные устройства коммутации и управления HAGER
Автоматические выключатели, УЗО и дифф. автоматы Hager
Линейные защитные автоматы - для защиты кабелей и проводов
Автоматические выключатели Hager HMF на токи 80-125А
Автоматические выключатели SASSIN
Автоматы дифференциальные SASSIN серии C45L, C45N

Статьи по теме:

Выбор устройства защитного отключения (УЗО)
Выбор дифференциального автомата
Проведение электромонтажных работ


Внимание! При полном или частичном копировании материалов данной статьи или другой информации с сайта www.electromirbel.ru, обязательно наличиеактивной ссылки, ведущей на главную страницу www.electromirbel.ru или на страницу с копируемым материалом. Гиперссылка не должна быть запрещена к индексации поисковыми системами (например, с помощью тегов noindex, nofollow и т.д.)!!!


© ООО "Электромир", 2010.

Принцип действия автоматического выключателя

В наше время в быту уже не встретишь плавких предохранителей – это вчерашний день. Сегодня на смену «пробкам» пришли автоматические выключатели модульного исполнения, которые обеспечивают надежную защиту электропроводки квартиры. Наверняка многие задавались вопросом о том, как работает автоматический выключатель. С другой стороны знание принципа работы автоматического выключателя помогут правильно определить причину его отключения и соответствующую проблему, которая привела к его отключению. Ниже кратко охарактеризуем данный электрический аппарат и рассмотрим его принцип действия. Для начала определимся с понятием автоматический выключатель. Это коммутационный аппарат, который предназначен для включения и отключения в цепях тока нагрузки в обычном, нормальном режиме, а также для автоматического отключения (разрыва цепи) при протекании через него тока перегрузки или тока короткого замыкания. Функции отключения аппарата выполняют так называемые расцепители. Модульный автоматический выключатель, как правило, имеет независимый, тепловой и электромагнитный расцепители. Независимый расцепитель или механизм свободного расцепления предназначен для отключения аппарата вручную. Кроме того, данный механизм отключает автомат при воздействии на него теплового или электромагнитного расцепителей.

Устройство автоматического выключателя

Устройство автоматического выключателя. Тепловой расцепитель предназначен для автоматического отключения выключателя при протекании по нему тока, значение которого больше номинального. Основной конструктивный элемент данного типа расцепителя – биметаллическая пластина, которая деформируется в результате нагрева при протекании определенного значения тока. При достижении заданного положения пластина воздействует на механизм свободного расцепления, чем обеспечивается автоматическое отключение аппарата. Время, в течение которого происходит отключение автоматического выключателя, обратно пропорционально величине протекаемого через него тока. То есть чем больше ток, протекающий через данный автоматический выключатель, тем быстрее произойдет его автоматическое отключение. Например, автоматический выключатель, рассчитанный на номинальный ток в 16 А при протекании через него тока величиной в 19 А отключится в течении 40-45 мин. А при значении тока 32 А отключиться за 5-10 мин. Следует отметить, что на скорость срабатывания теплового расцепителя оказывает влияние температура окружающей среды. Таким образом, летом, при температуре 450 номинальный ток 16-ти амперного аппарата составляет 15 А. В то время как зимой, при температуре -200 величина предельно допустимого тока для данного аппарата увеличивается до 21 А. Благодаря тепловому расцепителю, автоматический выключатель осуществляет защиту конструктивных элементов электропроводки квартиры от перегрузки, которая возникает при включении в бытовую сеть электроприборов, мощность которых больше максимально допустимой для электропроводки. Следующий тип расцепителя – электромагнитный. Он предназначен для отключения автоматического выключателя при протекании через него большого значения тока – тока короткого замыкания. Такой режим работы имеет место при повреждении электропроводки или включенного в сеть бытового электроприбора. Рассмотрим принцип работы электромагнитного расцепителя. Электромагнитный расцепитель конструктивно представляет собой электромагнит с якорем, включенный в цепь последовательно. При протекании через автоматический выключатель номинального тока сердечник электромагнита находится в неподвижном состоянии. Если через электромагнит будет протекать большое значение тока (выше тока уставки), то он втянет сердечник с якорем и воздействует на механизм расцепления автоматического выключателя. То есть при протекании тока короткого замыкания автомат отключится автоматически действием электромагнитного расцепителя. При этом время отключения автоматического выключателя составляет доли секунды. Ток, при котором происходит срабатывание электромагнитного расцепителя можно определить по классу автоматического выключателя. Например, электромагнитный расцепитель аппарата класса В отключается при протекании через него 3-5 номинальных значений тока. Автомат класса С отключится при протекании через него 6-10 номиналов. Данная особенность учитывается при выборе автоматических выключателей для защиты электропроводки. Это связано с тем, что некоторые потребители электрической энергии, в частности электродвигатели, характеризуются большим значением пускового тока. То есть если пусковой ток больше тока срабатывания электромагнитного расцепителя, то данный электродвигатель не запустится по причине отключения автоматического выключателя. Решением проблемы в данном случае является установка автоматического выключателя следующего класса (например, замена аппарата с классом В на аналогичный по номинальному току теплового расцепителя аппарата с классом С).

53.Защита электрических сетей напряжением до 1 кВ автоматическими выключателями. Чувствительность и селективность автоматических выключателей. Карта селективности.

Автоматические выключатели снабжают специальными устройствами токовой релейной защиты, которые в зависимости от типа выключателя выполняют в виде токовой отсечки, максимальной токовой защиты с зависимой и не­зависимой выдержкой времени или в виде двухступенчатой и трех­ступенчатой токовой защиты. Для этого используют электромагнитные, тепловые и полупроводниковые устройства защиты, которые называют рас­цепителями.

Автоматические выключатели, защита которых содержит все три ступени защиты или вторую и третью называются селективными.

Основными характеристиками автоматических выключателей являются номинальный ток Iа.ном, номинальное напряжение Uа.ном  и номинальный ток отключения Ιа.откл.

Номинальным током отключения называется наи­больший ток, который выключатель способен отключить.

Расцепи­тель характеризуется номинальным током Iрц.ном,  током срабатывания Iс.з. и выдержкой времени tс.з. каждой ступени. Номинальным током расцепителя на­зывается наибольший ток, длительное прохождение которого не вызывает срабатывания расцепителя.

 

РАСЦЕПИТЕЛИ АВТОМАТИЧЕСКИХ ВЫКЛЮЧАТЕЛЕЙ

 

С помощью тепловых расцепителей выполняется максимальная токовая защита. Сочетание теплового расце­пителя с электромагнитным мгновенного действия позволяет вы­полнить двухступенчатую токовую защиту, содержащую первую и третью сту­пени. При перегрузках защита действует с зависимой выдержкой времени, а при коротких замыканиях - без выдержки времени. Такое устройство защиты можно назвать комбинированным расцепителем. Комбинированными расцепителями снабжены автоматических выключатели А3110.

Биметаллический элемент реле 1 имеет форму полукольца с выступом, на котором расположен установочный винт 2. Элемент соединен заклепками с токоведущими шинами 5 и 6. Параллельно биметаллическому элементу подклю­чен нагреватель 4. Наличие нагревателя позволяет увеличить выдержки време­ни реле   при перегрузках. Принцип действия расцепителя.  При перегрузке термобиметаллический элемент прогибается под действием теплоты, выделяемой непосредственно в нем и в нагревателе. Установоч­ный винт 2 воздействует на рейку 3, которая, поворачиваясь, освобождает удерживающие рычаги механизма свободного расцепления и под действием пружин автоматический выключатель отключается

 

 

ВЫБОР ПАРАМЕТРОВ РАСЦЕПИТЕЛЕЙ АВТОМАТИЧЕСКИХ ВЫКЛЮЧАТЕЛЕЙ

 

Основные принципы выбора параметров токовой защиты сохраняются и при выпол­нении защиты расцепителями автоматических выключателей.

Общим для всех автоматических вы­ключателей является соблюдение следующих требований:

1. Номинальное напряжение Uа.ном должно быть не ниже напря­жения сети.

2. Номинальный ток отключения должен быть больше максимального тока КЗ.

3. Номинальный ток расцепителя Iрц.ном выбирается больше максимального рабочего тока Iраб.max

Iрц.ном >= Iраб.max

 

Первая ступень защиты - токовая отсечка без выдержки вре­мени. Ток срабатывания  отстраивается от максимального тока внешнего ко­роткого замыкания

Выполнить это условие иногда бывает невозможно, так как у многих се­лективных автоматических выклю­чателей, снабженных трехступенча­той токовой защитой, уставка тока срабатывания первой ступени не ре­гулируется.

 

Вторая ступень защиты - токовая отсечка с выдержкой вре­мени.

Токовая отсечка с выдержкой времени не должна срабатывать при КЗ в начале следующего участка и при перегрузках.

Требуется ток срабатывания  и выдержку времени  второй сту­пени защиты выключателя QF1 отстроить от тока срабатывания  выдержки времени  первой ступени защиты выключателя QF2, по условиям:

 

,

где  =1,3... 1,5;

 - ступень селективности: для выключателей ВА55, ВА75  = 0,1 с; для выключателя А3790С  = 0,15 с и для выключателя «Электрон» = 0,2...0,25 с. Для исключения срабатывания при кратко­временных перегрузках необходимо выполнить условие

 

Третья ступень защиты — максимальная токовая защита.

Ток срабатывания третьей ступени не определяют. Он связан с номинальным током расцепителя Iрц ном. Поэто­му, выбрав Iрц ном, мы уже тем самым выбрали ток срабатывания . Таким образом, задача может сводиться только к проверке чувствитель­ности защиты.  Время срабатывания третьей ступени выбирается на ступень селективности больше, чем время действиия защит на смежных элементах.

Время срабатывания  для полупроводниковых расцепителей устанавливается при токе 6 Iрц ном.

 

Чувствительность и селективность расцепителей автоматических выключателей

 

Чувствительность.

В сетях, защищаемых только от токов КЗ, для обеспечения чувствительности расце­пителей должны выполняться следующие условия:

1. Минимальный ток КЗ Iк.min в наиболее удаленной точке защищаемой линии должен быть больше номинального тока расцепителя Iрц ном в три и более раза;

2. Для автоматических выключателей, имеющих только расцепи­тели мгновенного срабатывания, должны выполняться соотношения:

- Iк.min > 1,4 , для выключателей с I ном < 100 А 

- Iк.min > l,25  для всех других выключателей.

 

Для сетей, защищаемых и от перегрузки, должны выполняться сле­дующие условия:

1.     < (0,8...1) Iдл.доп. для выключателей, имеющих только мгновенно действующий расцепитель;

2.     Iрц.ном < Iдл.доп. для ненастраиваемого расцепителя.

3.     < (1...1,25) Iдл.доп. для расцепителя с регулируемой обратно зависимой от тока характеристикой.

 

Селективность.

Для обеспечения селективного отключения последо­вательно установленных автоматических выключателей защитные характеристики их расцепителей не должны пересекаться. При этом ток срабатывания расцепителя выключателя, расположенного ближе к источ­нику питания, должен быть больше, чем у расцепителя автоматическо­го выключателя, более удаленного от источника питания сети.

Для графического определения селективности строится карта селективности.

Если характеристика расцепителя не удовлетворяет требованиям селективности, его уставки принимаются выше расчетных.

При этом не всегда удается получить селективно действующую за­щиту во всем диапазоне токов КЗ.

Селективного дейст­вия добиться нельзя, если < .

При согласовании защитных характеристик среднюю погрешность действия расцепителей принимают равной = ±20%  для всех типов выключателей. В этом случае селективность обеспечивается, если 0,8 tсз1 > 1,2 tсз2 или tсз1 > 1,5 tсз2.

В сетях напряжением до 1 кВ необходимо обеспечивать селективность при совме­стной работе автоматических выключателей и плавких предохраните­лей. При этом ближе к источнику питания может находиться как вы­ключатель, так и предохранитель.

Если ближе к источнику автоматический выключатель, селективного дейст­вия можно достичь, используя селективный автоматический выключатель. Селективность обеспечивается и при неселективном вы­ключателе, если ток наибольшей уставки отсечки выше, чем ток КЗ при повреждении за предохранителем.

Если ближе к ис­точнику находится предохранитель, требования к селективности такие же, как и при согласовании между собой защитных характеристик пре­дохранителей.

Для графического определения селективности строится карта селективности.

 

 

Выбор автоматического выключателя

Автоматический выключатель должен соответствовать требованиям, предъявляемым к нему в каждом конкретном случае, поэтому для успешного выбора модели нужно знать параметры защищаемой электропроводки, подключаемых к ней нагрузок и главные характеристики электропитания.

Основываясь на этих данных и необходимых параметрах защиты, можно выбрать нужные автоматы для реализации схемы электрощита и системы токовой защиты в целом. Так как схема может быть достаточно сложной и не только состоять из нескольких ступеней защиты, но и иметь несколько вводных и отходящих линий, то для выбора выключателей в то или иное место нужно также учитывать указанные выше параметры смежных автоматов и других аппаратов защиты установленных до и после выбираемого автомата.

Чтобы выбрать подходящий автоматический выключатель, нужно обратить внимание на следующие характеристики:

Номинальное напряжение Ue (B)

Это максимальное допустимое значение напряжения в условиях нормальной работы. При меньших величинах напряжения отдельные характеристики могут изменяться или, в некоторых случаях, улучшаться (например отключающая способность).

Номинальное напряжение изоляции Ui (кB)

Установленное изготовителем значение напряжения, характеризующее максимальное номинальное напряжение выключателя. Максимальное номинальное напряжение ни в коем случае не должно превышать номинальное напряжение изоляции.

Номинальное импульсное напряжение Uimp (кВ)

Номинальное импульсное напряжение – пиковое значение импульсного напряжения заданной формы и полярности, которое автомат способен выдержать без ущерба.

Номинальный ток In (А)

Это наибольший ток, который автомат может проводить неограниченное долгое время при температуре окружающего воздуха 40°С по ГОСТ Р 50030.2-99 и 30°С по ГОСТ Р 50345-99. При более высоких температурах значение номинального тока уменьшается.

Предельный ток короткого замыкания

Эта характеристика определяет максимальный ток, при протекании которого автоматический выключатель способен разомкнуть цепь хотя бы один раз. Так же её называют предельная коммутационная способность (ПКС). Иначе говоря, ПКС показывает максимальный ток при котором подвижный контакт автомата не приварится (не пригорит) к неподвижному контакту при возникновении и гашении дуги при размыкании контактов. Токи короткого замыкания могут достигать нескольких тысяч ампер и указываются на маркировке модели.

Класс токоограничения

Параметр, напрямую влияющий на безопасность, надежность и долговечность электропроводки. Он заключается в отключении питания защищаемой цепи раньше, чем ток короткого замыкания достигнет своего максимума. Благодаря этому изоляция не подвергается повышенному нагреву при коротких замыканиях, тем самым снижая риск возникновения возгорания. Класс токоограничения - это время от момента начала размыкания силовых контактов автоматического выключателя до момента полного гашения электрической дуги в дугогасительной камере. Существует три класса токоограничения: 1, 2, 3. Самый высокий класс - 3. Время гашения дуги автомата этого класса происходит за 2,5…6 мс , 2-го класса — 6…10 мс, 1 класса — за время более 10 мс. Данная характеристика указывается под значением предельной коммутационной способности в черном квадрате. Автоматы с токоограничением 1-го класса не маркируются.

Количество полюсов

Данная характеристика определяет максимально возможное количество подключаемых к автомату защиты питающих и защищаемых проводов/проводников, одновременное отключение которых происходит при аварийной ситуации (превышение значения номинального тока и кривой отключения свыше определенного времени) в любой из подключенных цепей.

Номинальная отключающая способность Icu (кА)

Это способность автомата отключить защищаемый участок при возникновения в нем тока короткого замыкания, не превышающем величины предельной коммутационной способности. Если ток будет превышать её, то защита линии и способность автомата отключиться не гарантируется. Если автомат выбран по номинальной отключающей способности, то он может обеспечить защиту от тока короткого замыкания несколько раз.

Кривая отключения

Это характеристика зависимости времени отключения от протекаемого тока. Иначе её еще называют токо-временная характеристика. Выбор должен осуществляться в соответствии с типом Вашей системы, так как требования по защите всегда различны. Существует несколько типов кривых, самые популярные из них это типы B, C, и D: 1. Кривая B предназначена в основном для защиты генераторов, пиковых бросков тока нет. Расцепление от 3 до 5 номинальных токов. 2. Кривая C необходима для защиты цепей в случаях общего применения. Расцепление от 5 до 10 номинальных токов. 3. Кривая D требуется для защиты цепей с высоким пусковым током (трансформаторов и двигателей). Расцепление от 10 до 20 номинальных токов.

Степень защиты — IP

Степень защиты автоматического выключателя от неблагоприятных воздействий окружающей среды характеризуется международным стандартом IP и обозначается двумя цифрами, например IP20. Более подробно об этой важной характеристике Вы можете узнать в статье Что такое класс защиты IP

Что обозначает маркировка выключателя?

На фото изображена маркировка однополюсного автоматическиго выключателя фирмы Siemens. На его примере рассмотрим типичные обозначения данного ряда устройств: 5SY61 MCB - полное название модели, С 10 - кривая отключения типа С и номинальный ток 10 А, 230-400V - номинальное напряжение. Схемы показывают 2 рабочих положения автомата: I — цепь замкнута ( положение 1), O — цепь разомкнута (положение 2). Ниже слева от индикатора включения представлена предельная коммутационная способность (ток короткого замыкания) - 6000 А, под ней расположен класс токоограничения - 3. Подробное описание всех этих параметров приведено выше.

Зная эти характеристики можно без труда подобрать нужную модель. На нашем сайте представлен широкий ассортимент автоматических выключателей и вся необходимая информация о них. Задавайте все интересующие Вас вопросы через форму «Помощь онлайн», и Вам обязательно помогут с выбором. Удачных приобретений!

Автоматические выключатели - характеристики. Как выбрать товар?

Автоматические выключатели, колена, вилки, предохранители, автоматические выключатели. Несмотря на разнообразную номенклатуру, эти устройства имеют одно назначение – эффективно защищать электрические цепи от перегрузок и коротких замыканий.

В этой статье вы можете прочитать:

О том, как классифицировать автоматические выключатели по их характеристикам, какие продукты вы найдете на рынке и как правильно выбрать автоматический выключатель.

Что вы ищете?

Автоматический выключатель - времятоковая характеристика

Разбивка автоматических выключателей по характеристикам основана на категоризации скорости срабатывания автоматических выключателей в зависимости от силы тока, протекающего через них. В свою очередь, при возникновении короткого замыкания в цепи немедленно срабатывает автоматический выключатель, независимо от его времятоковой характеристики.

Времятоковые характеристики автоматических выключателей

Характеристика А Характеристика В Характеристика С Характеристика D
Редкие Автоматические выключатели типа А являются автоматическими выключателями мгновенного действия. Наиболее часто используемые миниатюрные автоматические выключатели, которые в основном реализуются в жилых решениях и различных типах коммерческих помещений мощностью до нескольких кВт. Примером может служить автоматический выключатель HN-C25. Этот тип реле времени используется в основном в промышленности. Это автоматические выключатели, используемые только в типичных промышленных решениях.
Применяются для защиты электронных устройств, чувствительных к колебаниям интенсивности электроэнергии. Применяются для защиты цепей розеток, цепей освещения, а также бытовой техники и электроники с малым пусковым током. Они используются для защиты устройств с высокими пусковыми токами, например, трехфазных электродвигателей. Используется для защиты силовых устройств с высокими пусковыми токами, например, турбин или генераторов.
Ток отключения при перегрузке: 1,13-, 145 Ток отключения при перегрузке: 1,13-, 145 Ток отключения при перегрузке: 1,13-, 145 Ток отключения при перегрузке: 1,13-, 145
- Ток отключения при коротком замыкании: 3-5 Ток отключения при коротком замыкании: 5-10 Ток отключения при коротком замыкании: 10-20

Помимо стандартного деления автоматических выключателей максимального тока на автоматические выключатели с времятоковой характеристикой А, В, С и D, на рынке также представлены более специализированные автоматические выключатели с характеристиками, обозначенными символами: Е, К, S, Z или L .

Миниатюрные автоматические выключатели Eaton в магазине Onninen

Миниатюрный автоматический выключатель — Обзор изделия

ХН-Б6/1Н

EATON HN серия 1 + автоматический выключатель максимального тока N-полюса с номинальной отключающей способностью при коротком замыкании 6 кА. Выключатель обеспечивает высокую избирательность отключения за счет малой передаваемой энергии. Обеспечивает подключение источника питания снизу и сверху и монтаж для подключения до 48 В постоянного тока на полюс. Выключатель соответствует требованиям по координации изоляции благодаря зазору контактов, равному или превышающему 4 мм.Оснащен большим количеством дополнительных аксессуаров и индикатором положения контактов.

PLHT-B80

3-полюсный автоматический выключатель максимального тока с характеристикой D. Автоматический выключатель рассчитан на номинальный ток 80 А и номинальную мощность короткого замыкания 20 кА. Номинальное импульсное выдерживаемое напряжение выключателя 4 кВ, номинальное напряжение 400 В.

PL7-C25/1-DC

Автоматический выключатель однополюсный с характеристикой С и номинальным током 25 А.Стойкость автоматического выключателя к короткому замыканию составляет 10 кА. Выключатель соответствует требованиям по координации изоляции благодаря зазору контактов, равному или превышающему 4 мм. Оснащен большим количеством дополнительных аксессуаров и индикатором положения контактов.

ХН-В63/2

2-полюсный автоматический выключатель максимального тока, характеристика В. Автоматический выключатель рассчитан на номинальный ток 63 А и номинальную мощность короткого замыкания 6 кА. Расчетное импульсное напряжение автоматического выключателя 230 В.

ХН-Б10/3Н

Четырехполюсный автоматический выключатель максимального тока с характеристикой B и номинальным током 6 А. Выключатель соответствует требованиям по координации изоляции благодаря зазору контактов, равному или превышающему 4 мм. Оснащен большим количеством дополнительных аксессуаров и индикатором положения контактов.

Миниатюрные автоматические выключатели Eaton в магазине Onninen

На рынке представлен широкий ассортимент автоматических выключателей максимального тока.Автоматические выключатели работают при номинальных напряжениях до 440 В и токах до 125 А. Токи отключения автоматических выключателей В, С и Г не превышают 25 кА, а наиболее часто применяются устройства защиты с номинальным током до 63 А и отключающие токи до 10 кА. Флагманским образцом сверхтокового автоматического выключателя с характеристикой С для защиты цепей в жилых или коммерческих объектах является 3-полюсная модель EATON HN-C6/3 с номинальной отключающей способностью при коротком замыкании 6 кА и номинальным током от 6 А.Каждый МСВ имеет унифицированную ширину - 17,7 мм для одного модуля. В верхней и нижней части выключателей расположены винтовые зажимы, к которым подключаются силовые и отводящие кабели, а в передней части выключателя - приводной рычаг, переключающий напряжение в цепи, защищаемой Устройство. На передней панели выключателей указаны параметры устройства - его тип, характеристики, напряжение и номинальный ток.

Производители предлагают автоматические выключатели с 1, 2, 3 и 4 полюсами, а также с дополнительным токопроводом нейтрали.Большинство современных автоматических выключателей имеют конструкцию, позволяющую монтировать их на DIN-рейку Th45 без необходимости отвинчивания всей группы электрических устройств. Автоматические выключатели оснащены двумя триггерами - тепловым , защищающим от перегрузки, и электромагнитным , защищающим от короткого замыкания. Все миниатюрные автоматические выключатели, представленные на рынке, производятся в соответствии со стандартами: DIN EN 60890-1, EN 60 898-1 и IEC 60 947-2.

Миниатюрный автоматический выключатель — выбор автоматического выключателя

В соответствии со стандартом PN-HD 60364-4-43:2012 выключатели максимального тока должны быть выбраны таким образом, чтобы обеспечить работу электроаппарата при протекании через них электрического тока силой большей, чем длительно допустимая токовая нагрузка жил Iz.Это требование может быть выполнено, если выполняются условия неравенства - Iб ≤ In ≤ Iz ; I2 ≤ 1,45 Iz , где: Ib - расчетный (номинальный) ток приемника (ов), где:

90 136 90 137 Iб - расчетный (номинальный) ток приемника (ов), 90 138
  • Из - долговременная допустимая нагрузка по току кабеля,
  • In - номинальный ток или ток уставки защитного устройства,
  • I2 - рабочий ток устройства защиты.
  • Ток I2 определяется как кратность In "эски" или номинальный ток предохранителя. I2 = k x В , где:

    • k - коэффициент умножения тока, вызывающего срабатывание автоматического выключателя. Коэффициент k равен:
      • 1,6-2,1 для плавких вставок,
      • 1,45 для автоматических выключателей с характеристиками B, C и D.
      • 90 145

      Пример выбора автоматического выключателя

      Чтобы лучше проиллюстрировать выбор автоматического выключателя, рассмотрим простой пример. Мы хотим защитить от коротких замыканий и перегрузок жилую цепь, выполненную кабелем 3x2,5 мм2 YDYp, уложенным под штукатурку.Суммарная мощность установленных в схеме приемников 2 кВт. Как выбрать автоматический выключатель?

      Шаг 1

      Токонесущую способность кабеля ЖДЫп 3х2,5 мм2 мы можем узнать из таблицы, в которой представлена ​​токонесущая способность кабелей в зависимости от места и способа прокладки.

      Шаг 2

      Рассчитываем номинальный ток приемников из их номинальной мощности. В нашем случае это около 8,6 А.

      Шаг 3

      Подставляем полученные значения в формулу: 8,6 А ≤ In ≤ 18,5 А.
      Значит номинальный ток находится в пределах 10-16 А. Выбираем большее значение и подставляем его в неравенство: 8,6 А ≤16 А ≤ 18,5 А.

      Шаг 4

      Преобразуем неравенство, чтобы получить значение тока срабатывания устройства защиты I2:
      I2 ≤ 1,45 Iz
      I2 ≤ 1,45 × 18,5 -> I2 ≤ 26,825
      I2 = k × In = 1,45x -> 1,45 x 16 = 23,2 А
      23,2 ≤ 26,825

      На основании полученных результатов достаточно защитить данную цепь автоматическим выключателем максимального тока с характеристикой В.

      Миниатюрные автоматические выключатели Eaton в магазине Onninen

      .

      Миниатюрные автоматические выключатели - Профессиональный электрик

      Не нужно никого убеждать в необходимости использования соответствующих защит для обеспечения защиты от последствий коротких замыканий и перегрузок. Важную роль играет предотвращение ускоренного старения изоляции, которое может стать причиной не только выхода из строя, но и пожара.

      Фото 1 коммутатор G62 из серии GE Redline. К таким автоматическим выключателям можно подключить до четырех вспомогательных контактов с каждой стороны.

      Напоминаем, что автоматические выключатели предлагаются в нескольких модификациях. Автоматические выключатели, обозначенные буквой А, являются мгновенными. В случае короткого замыкания цепь немедленно отключается. На рынке также представлены модели автоматических выключателей с маркировкой B, C и D. Они характеризуются задержкой срабатывания. Различные модели отличаются отношением тока срабатывания к номинальному току. Назначение каждой группы переключателей также разное.Модели из группы А предназначены для защиты электронных устройств. Нагрузки, нечувствительные к тепловым перегрузкам, с малыми пусковыми токами, защищаются автоматическими выключателями группы В. Модели с маркировкой С являются обязательным элементом электроустановок с малыми мощностями, достигающими нескольких киловатт. Двигатели большой мощности защищены автоматическими выключателями группы Д.

      . Доступные на рынке миниатюрные автоматические выключатели

      HAGER работают при максимальном напряжении 440 В и токе до 125 А.Токи отключения до 25 кА с временными характеристиками B, C и D. Наиболее часто используемые модели характеризуются номинальным током до 63 А и током отключения не более 10 кА. Важнейшим преимуществом миниатюрных автоматических выключателей является возможность многократного использования. Их преимущество перед плавкими вставками также обусловлено высокой чувствительностью.

      Что есть на рынке

      Благодаря автоматическим выключателям максимального тока, которые являются обязательным элементом современных электроустановок, мы получим защиту от коротких замыканий и перегрузок низковольтных электроприборов переменного и постоянного тока.Конструкция типичного выключателя основана на воздушной, изолирующей и открытой конструкции. Привод чаще всего ручной, но можно купить модели с дистанционным управлением (электромагнитным или моторным).

      Фото 2 Автоматические выключатели максимального тока Hager с номинальной мощностью короткого замыкания 10 кА изготавливаются в виде 1-, 1+N, 2-, 3-, 3+N и 4-полюсных устройств. Диапазон номинальных токов от 0,5 до 63 А при номинальном напряжении 230/400 В переменного тока, 50/60 Гц. Их также можно использовать в цепях постоянного тока.

      В устройствах с характеристикой В расцепитель перегрузки устанавливается на 1,13 - 1,45 кратного номинального тока, а расцепитель короткого замыкания - на 3 - 5 кратного номинального тока. А какие параметры у автоматических выключателей с характеристиками C и D? Итак, автоматические выключатели с характеристикой С отключают ток короткого замыкания, когда он достигает значения, в 5-10 раз превышающего номинальный ток. Модели с характеристикой D срабатывают, когда ток достигает 10-20-кратного значения номинального тока. Выключатели доступны в версиях с 1, 2, 3 и 4 полюсами.Кроме того, предлагаются модели с нейтральной колеей или без нее.

      Миниатюрные автоматические выключатели также доступны для промышленных решений. Их можно приобрести в классах срабатывания B, C и D. Также предлагаются специальные версии этих устройств. Например, автоматические выключатели с характеристикой Z характеризуются током короткого замыкания 2-3×I н , что обеспечивает быструю реакцию на возникающие перегрузки. Таким образом, эти компоненты можно использовать в установках, предназначенных для защиты чувствительных электронных устройств.Благодаря имеющимся аксессуарам функциональность модульной конструкции может быть увеличена, а сборка осуществляется без инструментов. Отметим, что выключатели изготавливаются также для промышленных установок с синусоидальным, выпрямленным импульсным и плавным током.

      Миниатюрные автоматические выключатели оснащены монтажной рейкой DIN 35, и сборка узла происходит без отвинчивания всей группы. Устройство имеет понятную схему подключения и основные параметры.Монтажные зажимы взаимодействуют с заглушками, что определенно повышает безопасность при использовании.

      Фото 3 Автоматические выключатели серии Fixwell – это модели с безвинтовыми клеммами (сверху) и втычными клеммами для сборной шины (снизу). Таким образом, при сборке вы экономите время по сравнению с традиционными решениями.

      Производители также предлагают селективные автоматические выключатели максимального тока. Являются незаменимым элементом установок, где требуется селективность срабатывания последовательно соединенных защит.Отсюда и роль автоматических выключателей максимального тока, благодаря которым можно выборочно управлять стандартными автоматическими выключателями после них (со стороны питания). Таким образом, селективность срабатывания защиты означает, что в случае отказа одной из цепей установки сработают только те последовательно установленные устройства защиты, которые находятся ближе всего к отказу. Таким образом, сохраняется непрерывность питания неповрежденных цепей.

      Три в одном

      Универсальность современных защитных устройств позволяет одновременно защищать от перегрузок и коротких замыканий, а также предотвращать поражение электрическим током в однофазных и трехфазных установках.Дополнительной защитой является защита цепей с розетками, расположенных в местах, подверженных воздействию влаги. Эти устройства выпускаются в двух- и четырехполюсном исполнении на номинальные токи от 16 до 125 А с дифференциальным током от 30 до 500 мА.

      Типовые селективные устройства защитного отключения отличаются повышенной устойчивостью к броску тока, составляющему 5 кА. Минимальная временная задержка составляет 40 мс. Работают избирательно по отношению к установленным выключателям мгновенного действия.Существуют также модели, предназначенные для работы с частотными преобразователями, благодаря которым обеспечивается непрерывность работы на частоте, отличной от 50 Гц, а преобразователь защищен от частого срабатывания автоматического выключателя.

      Фото 4 Ограничитель мощности ETIMAT T (автоматический выключатель максимального тока) предназначен для установки в распределительном щите в качестве предсчетной защиты T. Целью этой защиты является выборочное отключение по отношению к максимальной токовой защите получателя Z4.Номинальный ток ограничителя мощности ETIMAT T выбирается в соответствии с подключаемой/договорной мощностью получателя. Ограничители мощности ETIMAT T в пределах своих номинальных токов заменяют селективные автоматические выключатели. Ограничитель мощности ETIMAT T представляет собой автоматический выключатель без элемента короткого замыкания и имеет только элемент перегрузки (тепловой).
      Аксессуары

      Типичными аксессуарами, которые работают с миниатюрными автоматическими выключателями, являются в основном вспомогательные контакты. Именно благодаря им можно дистанционно сигнализировать о срабатывании МТЗ.В нашей установке мы также можем использовать контакты сигнализации, которые указывают положение контактов только в случае срабатывания автоматического выключателя. Интересными аксессуарами также являются расцепители напряжения, дистанционно размыкающие контакты автоматического выключателя при наличии напряжения. Мы также можем использовать расцепители минимального напряжения, которые отключают автоматический выключатель в случае падения напряжения относительно номинального значения. Через выключатели минимального напряжения можно отключить цепи в аварийной ситуации с помощью кнопки.Производители также предлагают устройства, которые позволяют автоматически повторно задействовать предохранительное устройство. Приобретая автоматический выключатель, также стоит позаботиться о защитных элементах маркировки.

      Как выбрать

      Помните, что устройства защиты следует выбирать так, чтобы при протекании токов величиной, превышающей длительно допустимую токопропускную способность Iz, их срабатывание происходило до чрезмерного повышения температуры проводников. Эти требования считаются выполненными, если выполняются следующие условия:

      I b ≤ I n ≤ I z

      I 2 ≤ 1,45 I z

      где:
      I б - расчетный ток или номинальный ток приемника, если от данной цепи питается только одна нагрузка,
      I з - долговременная допустимая нагрузка кабеля по току,
      I n - номинальный ток или ток уставки устройства защиты,
      I 2 - ток срабатывания устройства защиты.

      Ток срабатывания устройства I2 следует определять как кратное номинальному току In автоматического выключателя максимального тока или плавкого предохранителя по формуле:

      I 2 = k × I n

      где:
      k коэффициент умножения тока, вызывающего срабатывание защитного устройства, принимаемый равным: 1,6 и 2,1 для плавких вставок и 1,45 для автоматических выключателей максимального тока с характеристиками B, C и D.

      Характеристики расцепителей максимального тока автоматических выключателей таковы, что их рабочий ток I 2 равен 1,45 I nt , где I nt — ток уставки расцепителя перегрузки.

      Фото 5 Автоматический выключатель максимального тока (ограничитель мощности) Etimat T. Разработан в основном для применения в области досчетчиков. Он действует как выключатель максимального тока в питающей сети и служит для защиты измерительной части в случае короткого замыкания в приемной установке. В силу принципа селективности отключается автоматический выключатель максимального тока в подраспределительном устройстве, а не селективный выключатель в предсчетной зоне.
      Несколько советов

      Помните, что устройство защиты от перегрузки должно быть расположено там, где есть изменение поперечного сечения, типа или метода проводки или конструкции установки, при условии, что эти изменения приводят к уменьшению допустимой нагрузки по току кабелей.При отсутствии ответвлений и розеток на участке между местом модификации и устройством защиты и проводка защищена от токов короткого замыкания или сечение проводки не превышает трех метров, важно, чтобы место установки защиты находилось выше места переключения точка. Также необходимо учитывать конструкцию, снижающую риск короткого замыкания. Стоит обратить внимание на то, что устройства защиты не требуются, когда модификации защищены со стороны питания или отсутствуют токи перегрузки в кабелях.Безопасность не нужно устанавливать в системах телекоммуникаций, управления или сигнализации. Отсутствие защиты допускается также в распределительных цепях, выполненных с кабелями, проложенными в земле или в виде воздушных линий.

      Как параметры, так и способ установки защит также должны учитывать протекание тока. Если они распределяются по проводникам равномерно, то долговременная нагрузочная способность проводников представляет собой сумму нагрузок в отдельных проводниках.Если протекание токов в одной и той же цепи неравномерно, важно, чтобы на каждом проводнике были установлены устройства защиты.

      Также бывают ситуации, когда рекомендуется обойти устройства защиты от перегрузки. В основном это касается цепей питания приемников, отключение которых может вызвать опасность. На практике это чаще всего цепи возбуждения вращающихся машин, системы питания лифтовых электромагнитов и др.

      Адам Езерский

      Анджей Шулик
      Менеджер по продукции
      Hager Polo Sp.о.о.

      Как выбрать подходящую защиту от перегрузки по току для установки?

      Выбор токовых защит зависит в первую очередь от типа нагрузки (приемника), с которой питаются линии электропередач от защит. Ключевым вопросом является выполнение простых, но ответственных расчетов, позволяющих правильно подобрать такие параметры, как: устойчивость к короткому замыканию защитного устройства и количество его полюсов, выбор характеристик срабатывания и значение номинального тока.Наиболее часто используемыми средствами защиты в электроустановках в жилом строительстве являются автоматические выключатели максимального тока (MCB) для монтажа на монтажной рейке TS35, со значениями прочности при коротком замыкании 6кА и 10кА (в соответствии со стандартом PN-EN 60898). Они эффективно и просто защищают кабели и провода от термических (перегрузка), а также термических и динамических (короткое замыкание) воздействий.

      Выбор характеристики срабатывания – это определение зависимости между значением номинального тока аппарата (т.е. реальной величиной тока, протекающего в цепи) и временем срабатывания защиты.Характеристика «В» чаще всего используется в элементах защиты установок, питающих цепи бытового освещения и штепсельные розетки. Для устройств с повышенным пусковым током (газоразрядные лампы, двигатели) применяют характеристику «С»; для агрегатов с «самым тяжелым пуском» используются кривые «D».

      При выборе токовых защит следует помнить о возможности расширения их функциональности, например, вспомогательными контактами, триггерами или дистанционными приводами. В некоторых случаях также требуется обеспечить избирательность защиты.

      При установке нескольких автоматических выключателей рядом друг с другом в распределительном устройстве целесообразно использовать специальные переключающие элементы, такие как гребенчатые или штыревые рейки.

      .

      Автомат защиты от перегрузки по току - как выбрать, подключение, характеристики

      Начнем с основ - что такое защита от перегрузки по току? Автоматический выключатель представляет собой автоматический электрический выключатель. Миниатюрные автоматические выключатели предназначены для предотвращения повреждения электрической цепи от перегрузки по току. Они предназначены для отключения при перегрузке или коротком замыкании для защиты от электрических неисправностей и отказа оборудования. Миниатюрные автоматические выключатели подразделяются на разные типы в зависимости от условий отключения при перегрузке по току.Ниже представлена ​​внутренняя структура автоматического выключателя максимального тока на 1 ампер.

      Характеристики автоматических выключателей

      Различие между каждым типом или классом автоматического выключателя определяется током, при котором автоматический выключатель срабатывает мгновенно. Точное время отключения (время отключения) при заданном токе можно определить по кривой или классу отключения при перегрузке по току.

      Тип автоматического выключателя Поездки сразу на

      кривой а
      2-3x номинального тока

      кривой б
      3 -5x Номинальный ток

      C Curve

      5-10x Номинальный ток

      D Curve

      10-20x Номинальный ток

      K Curve

      8-12x Номинальный ток

      Z-кривая

      2-3-кратный номинальный ток

      Автоматические выключатели типа А являются наиболее чувствительными и редко используются.Они рассчитаны на мгновенное срабатывание при токе в 2-3 раза больше номинального.

      Миниатюрные автоматические выключатели типа B предназначены для немедленного срабатывания , в 3–5 раз превышающего номинальный ток . Они в основном используются в домашних и коммерческих низковольтных приложениях, где перегрузка по току, вероятно, будет низкой . К ним относятся домашних электропроводок и осветительных приборов. Обычно они не используются в таких приложениях, как двигатели.

      Автоматические выключатели типа C предназначены для мгновенного отключения при токах, в 5-10 раз превышающих номинальный ток. Обычно используемые в коммерческих и промышленных целях, часто используются в небольших двигателях, вентиляторах, трансформаторах и флуоресцентном освещении .

      Миниатюрные автоматические выключатели с наименьшей чувствительностью типа D рассчитаны на мгновенное срабатывание при токах в 10-20 раз превышающих номинальный ток .Это делает их подходящими для высоконагруженных систем и других применений с сильными перенапряжениями . Применение автоматических выключателей типа D включает источники бесперебойного питания , большие двигатели , трансформаторы, рентгеновские аппараты и сварочное оборудование .

      Часто используемые в двигателях миниатюрные автоматические выключатели типа K предназначены для немедленного отключения, , когда ток достигает 8-12-кратного номинального тока .Миниатюрные автоматические выключатели типа K и D имеют очень похожие свойства. Основное отличие состоит в том, что автоматические выключатели типа K срабатывают быстрее , когда ток немного превышает номинальный. Это делает их более чувствительными, чем миниатюрные автоматические выключатели типа D, и в то же время они подходят для таких приложений, как двигатели.

      Как и миниатюрные автоматические выключатели типа A, типа Z предназначены для чувствительных систем . Они рассчитаны на мгновенное срабатывание, когда ток достигает 2-3 раза от номинального тока.Миниатюрные автоматические выключатели Z-типа обычно используются для защиты полупроводниковых цепей.

      Как выбрать автоматический выключатель?

      При выборе автоматического выключателя необходимо учитывать четыре фактора: 90 150 1) Допустимая нагрузка по току . Это номинальный ток, на котором будет основываться характеристика отключения. 90 150 2) Характеристика отключения .В несколько раз больше номинального тока, при котором должен сработать автоматический выключатель. Это определит тип автоматического выключателя.
      3) Номинальная отключающая способность при коротком замыкании Это максимальный ток и напряжение, на которые рассчитаны автоматические выключатели для безопасного разрыва цепи. Коммутационная способность также может быть указана как максимальный ток при заданном напряжении. 90 150 4) Количество полюсов . Количество полюсов определяет количество фаз (или цепей), которые можно защитить одним устройством.Однополюсный автоматический выключатель защищает только одну цепь, а трехполюсный автоматический выключатель защищает до трех цепей. Перегрузка одного полюса приведет к срабатыванию автоматического выключателя.

      Другим фактором, который следует учитывать, , является долговечность или срок службы , который говорит вам о максимальном количестве циклов. Как правило, миниатюрный автоматический выключатель рассчитан на двойное срабатывание . Вы можете проверить этот со спецификацией конкретного миниатюрного автоматического выключателя.

      Автоматические выключатели - часто задаваемые вопросы

      1) Как проверить автоматические выключатели?
      Для проверки автоматического выключателя после установки вам понадобится подходящий портативный вольтметр от известного производителя. Электрики также рекомендуют перед установкой вручную проверить коммутационный механизм автоматических выключателей; обычно для открытия и закрытия более надежных моделей требуется большее давление.

      2) Можно ли комбинировать различные автоматические выключатели?
      При выборе миниатюрных автоматических выключателей технические характеристики имеют большее значение, чем торговая марка, поэтому теоретически вы можете использовать любой компонент, совместимый с конкретным устройством.Тем не менее, смешивание марок в одной и той же установке не рекомендуется, так как это снижает надежность испытаний и может привести к аннулированию гарантии на установку.

      3) Почему миниатюрные автоматические выключатели выбирают чаще, чем предохранители?
      Миниатюрные автоматические выключатели выполняют ту же функцию, что и электрические предохранители, которые плавятся и тем самым разрывают цепь, если протекающий ток превышает определенный предел. Однако предохранители могут быть менее надежными, чем миниатюрные автоматические выключатели — последние лучше работают при более низких напряжениях и не нуждаются в замене после использования.

      4) В чем разница между автоматическими выключателями и автоматическими выключателями?
      Автоматические выключатели в литом корпусе выполняют функции, очень похожие на миниатюрные автоматические выключатели, но имеют более высокую электрическую мощность. Все миниатюрные автоматические выключатели представляют собой устройства до 100 ампер и предназначены для цепей низкого напряжения, поэтому их кривые срабатывания не могут быть отрегулированы. Напротив, автоматические выключатели в литом корпусе имеют регулируемую характеристику срабатывания, что означает, что они могут использоваться при более высоких напряжениях - в некоторых случаях до 2500.

      5) В чем разница между автоматическими выключателями и автоматическими выключателями с заземлением?
      Заземляющие автоматические выключатели используют заземление в качестве основного метода контроля электрического тока и предотвращения поражения электрическим током. Они работают, обнаруживая любое отклонение напряжения через корпус устройства, а затем разрывая цепь, если оно превышает установленный уровень. Они выполняют ту же функцию, что и УЗО, но последние обнаруживают паразитное напряжение напрямую, и поэтому теперь их чаще выбирают электрики.

      6) В чем разница между автоматическими выключателями и УЗО?
      УЗО — это еще один вид оборудования для обеспечения электробезопасности. В то время как миниатюрные автоматические выключатели имеют общую функцию, устройства защитного отключения специально разработаны для защиты от часто смертельного риска поражения электрическим током в результате прикосновения к оголенным проводам или неправильно заземленным кабелям. Они работают непосредственно в электрических цепях для обнаружения неисправностей и отключения потенциально опасных токов.Устройства защитного отключения также доступны в различных типах - типы A, B, C, D, K и Z.

      Краткое описание автоматических выключателей максимального тока

      Благодаря этой статье вы узнали, что такое миниатюрные автоматические выключатели, вы узнали о принципах и характеристиках операции. Вы узнали, для чего не предназначены автоматические выключатели максимального тока, и ознакомились с методикой подключения автоматического выключателя к одному и многим электрическим компонентам.

      Миниатюрные автоматические выключатели применяются везде, где возможно увеличение тока в розетках или в сети.Хорошо подобранные миниатюрные автоматические выключатели точно защищают всю электрическую установку машины, обеспечивая безопасность даже очень чувствительных датчиков. Мы верим, что вы сможете выбрать автоматический выключатель максимального тока, наиболее подходящий для вашей установки, чтобы он выполнял свои функции, максимально используя свои возможности.

      Специалисты EBMiA могут помочь с выбором подходящих автоматических выключателей . Благодаря сотрудничеству с известными производителями мы можем поставлять компоненты и аксессуары высочайшего качества.В этом вопросе и в случае любых других сомнений или вопросов достаточно проконсультироваться с нашими опытными продавцами-консультантами, которые будут рады предоставить необходимую информацию.

      Предлагаем вам прочитать следующие статьи, в которых мы описываем:

      Ограничитель перенапряжения - подключение, что это такое, как работает, конструкция

      Выключатель-разъединитель - что это такое, как выбрать, конструкция, применение

      Устройство защитного отключения - что это такое и как оно работает?

      Предохранители, элементы защиты электроустановок

      Выключатель двигателя - эффективный способ защиты двигателя

      Кулачковый выключатель - способ подключения, принцип действия , типы

      Защита от перенапряжения - что это такое, виды, преимущества

      .

      Выбор автомата защиты двигателя - электроцех el12

      Выключатель защиты двигателя

      Автоматический выключатель (называемый некоторыми тепловым выключателем) — это устройство, используемое для соединения и разделения токовых цепей, работающих под нагрузкой. Однако основная его задача – защитить двигатель от воздействия перегрузок, коротких замыканий и обрыва фазы.

      Мощность двигателя

      Чаще всего моторные выключатели используются для защиты маломощных двигателей — примерно до 4кВт.В исключительных случаях автоматические выключатели также используются для подключения двигателей большей мощности.

      Функции автоматического выключателя двигателя

      Неправильно работающий двигатель подвергается разрушению и может стать причиной возгорания - поэтому необходимо защитить его (и всю установку) от воздействия:
      • КЗ (за мгновенное отключение отвечает электромагнитный расцепитель - время срабатывания порядка миллисекунд)
      • потеря фаз питания (асимметрия фаз)
      • перегрузки и блокировка пуска (за это отвечает термопредохранитель)


      Выбор настройки автоматического выключателя двигателя

      Автоматические выключатели снабжены ручкой для установки тока отключения – он устанавливается по простой формуле:

      Inas = In * 1,1, где
      In - номинальный ток двигателя
      Inas - установка тока автоматического выключателя

      Например, для защиты двигателя с номинальным током 10А ручку следует установить на 11А (10*1,1).

      Установка защиты пускателя двигателя

      Ключевым моментом является установка выключателя всегда перед контактором – это защитит контактор от последствий возможных коротких замыканий.

      Другая информация 9000 4 Важным фактором при выборе автоматического выключателя также является ток короткого замыкания. Этот параметр указывает максимальный ток, который может протекать во время короткого замыкания без необратимого повреждения автоматического выключателя.
      В установках с несколькими двигателями, работающими параллельно, помните, что каждый двигатель защищен отдельным выключателем — это предотвратит выход из строя в случае, если один из двигателей нагружен больше, чем другие. .

      Миниатюрный автоматический выключатель - Что это? Подбор защит, характеристики

      Автомат защиты от перегрузки по току (МТЗ) на сегодняшний день является наиболее распространенным элементом электроустановки. Наверняка вы имели с ним дело, может быть, не обязательно под термином «автоматический выключатель» или «переключатель максимального тока», но также: вилка, предохранитель, эс или эска. Мы можем найти его практически в каждом доме, жилых и промышленных распределительных устройствах.Благодаря своей конструкции, функциональности и универсальности он успешно заменяет использовавшиеся ранее предохранители. В своей статье я постараюсь глубже ввести вас в тему этих устройств.

      Определение

      Общее определение автоматического выключателя максимального тока гласит, что это устройство, защищающее электрическую установку и подключенные через нее нагрузки от последствий коротких замыканий и перегрузок, которые могут возникнуть в этой установке. Анализируя вышеприведенное определение, сразу возникает другой вопрос: что такое перегрузка и что такое короткое замыкание? Позволь мне объяснить.

      Электрическая перегрузка - протекание электрического тока через компонент, превышающее номинальный ток компонента. Наш элемент – это электрический кабель с заданной производителем длительной пропускной способностью по току. При превышении этого значения выделяется тепло. В крайних случаях повышенная температура в электрокабеле, сохраняющаяся длительное время, может привести к возгоранию из-за оплавления изоляции.И здесь охраняется соответствующим образом подобранным автоматическим выключателем максимального тока , который в нужный момент прервет подачу питания в цепь. Почему я это отметил? В связи с тем, что автоматические выключатели максимального тока выбираются по определенным правилам, об этом мы поговорим далее в статье. При анализе определения электрических перегрузок стоит обсудить очень важный аспект. Это явление не возникает само по себе в электрических цепях. Обычно к таким ситуациям приводят конечные пользователи (т.е. мы), перегружающие отдельные электрические цепи.Идеальный пример показан на рис. 2, на котором мы видим знакомые всем электрические удлинители.

      Рис. 2. Подключение удлинителей

      Сразу хочу отметить, что я не против использования данного типа элементов. Самое главное использовать их с умом, потому что каждое из этих устройств имеет определенную пропускную способность по току. Неосведомленные пользователи часто последовательно подключают последовательные удлинители, а к ним дополнительные приемники, создавая мегаразвитую электрическую цепь.В случае такой разветвленной сети нетрудно обнаружить явление электрической перегрузки, и как я уже писал ранее, это может привести к достаточно серьезным последствиям. Вывод из этого - ограничить создание т.н. «Ежики».

      Электрическое короткое замыкание - на примере бытовой установки можно определить как соединение между фазным и нулевым проводниками из-за повреждения изоляции между этими проводниками или механического соединения этих проводников.Это явление сопровождается появлением в цепи очень высокого тока короткого замыкания, что может привести к повреждению кабелей, подключенных к цепи нагрузки, и вызвать пожар. Такой ток необходимо как можно быстрее прервать срабатыванием защиты от короткого замыкания, в нашем случае — «эски».

      Когда на практике происходит короткое замыкание? Например, при сверлении отверстия под дюбель мы наткнемся на провод под напряжением, мы неадекватно защитим конец обрезанного электропровода, где будут соединяться между собой фазный и нулевой провода.И, наконец, когда в процессе «обвязки» всей электроустановки скрепляем между собой провода L и N, а затем включаем электрическую цепь.

      Классификация самых популярных миниатюрных выключателей

        • Размер (Количество модулей):
          • 1-полюс
          • 2-полюсный
          • 3-полюс
          • 4-полюс
        3. 3-модульные и 1-модульные автоматические выключатели Рис.4. 4-модульные и 2-модульные автоматические выключатели максимального тока
        • По времятоковым характеристикам - характеристика срабатывания (рис. 5) - деление внутри этой группы относится к скорости срабатывания автоматического выключателя в зависимости от тока протекающий через него. Возникновение короткого замыкания в цепи приведет к немедленному срабатыванию автоматического выключателя максимального тока, независимо от характеристик.
          • Времятоковая характеристика А - реже, характеризуется немедленным срабатыванием (мгновенным), используются для защиты электронных устройств
          • Времятоковая характеристика В - наиболее стандартная группа, применяемая для бытовых решений, они применяются для защиты устройства с загрузкой низкого тока, напр.розетки и цепи освещения
          • Времятоковые характеристики C – используются для защиты устройств с повышенными пусковыми токами, в основном используются в промышленных решениях, например, для пуска двигателей
          • Времятоковые характеристики D – типично промышленное применение , защиты силового электрооборудования с большими пусковыми токами

        Также имеются автоматические выключатели с характеристиками E, K, L, S, Z.Ввиду тематики статьи мы не будем их обсуждать. Это устройства, с которыми обычный «смертный» вряд ли столкнется.

        Рис. 5. Времятоковые характеристики наиболее популярных групп выключателей максимального тока

        В таблице 1 приведены значения токов отключения при коротком замыкании и перегрузке в зависимости от времятоковых характеристик автоматического выключателя.


        6

        LP Часовой характер
        Thecking Teake
        Перегрузка (Fold)
        Ткан отключения
        Короткое зарчение (Fold)
        1. B B 1.13-1.45 1.13-1.45 от 3 до 5
        2 C 1.13-1.45 от 5 до 10
        3. D 1.13-1.45 от 10 до 20

        Таблица 1. Значения токов отключения при коротком замыкании и перегрузке в зависимости от характеристик выключателя

        • За счет номинального тока выключателя: 32А, 40А, 50А, 63А, 80А, 100А, 125А, некоторые производители предлагают автоматические выключатели с In = 0,5А, 1А, 2А, 3А, 4А, 8А

        Конструкция выключателя максимального тока имеет стандартизированную ширину (ширина одного модуля = 17,7 мм х умноженное на количество), а высота может незначительно отличаться в зависимости от производителя данной «S» (рис.3 и 4),
      • Конструкция корпуса выключателя адаптирована для монтажа на DIN-рейку Th45,
      Рис. 6. Вид сбоку на автоматический выключатель максимального тока

      • В верхней и нижней частях схемы выключателя имеются винтовые зажимы, которыми подключаются провода питания и заземления к нашему устройству,
      Рис. 7. Винтовая клемма, верхняя

      • На переднем плане имеется приводной рычаг, которым мы включаем/ отключить напряжение в цепи, защищаемой автоматическим выключателем (рис.8)
      • Под рычагом находится индикатор, показывающий состояние «работы» выключателя, а именно:
        • зеленый – выключатель выключен (обрыв цепи, безопасное состояние)
        • красный – выключатель включен
      Рис. 8. Вид на индикаторы и рычаг состояния положения выключателя

      • Рис. 9. Вид спереди – параметры выключателя максимального тока

        На передней панели также показаны параметры устройства, такие как: производитель, тип, характеристики отключения, номинальный ток, рабочее напряжение, максимальное значение тока, который может протекать через выключатель (рис.9),

      • Элементы корпуса выключателя показаны на рис. 10.
      Рис. электромагнитный)

      2 - Расцепитель перегрузки (термобиметалл)

      3 - Дугогасительная камера

      4 - Замок

      5 - Контакт неподвижный/подвижный

      11. На практике надо помнить следующие правила:

      • Для соединения автоматических выключателей с соединительными планками в модульном оборудовании используем специальные клеммы, расположенные над клеммами для проводов (обе стягиваются одним и тем же винтом)
      • Помним для того, чтобы затянуть каждое соединение планки с данным модулем,
      • Подбираем соответствующие планки для данного типа модульного оборудования,
      • Если мы хотим подключить провода типа провод к винтовой клемме, не забудьте снять соответствующие количество изоляции от них - не более 12 мм, чтобы при затяжке клемма правильно удерживала затянутый кабель,
      Рис.11. Установка 3-х фазной соединительной планки
      • Если вы хотите подключить к клемме два провода, помните, что они имеют одинаковое сечение - провода разного диаметра не будут постоянно закреплены, даже если я не знаю с с каким усилием затягивали винтовые клеммы (рис. 12),
      • Подсоединять провода Lgy и YDY к одной клемме также не рекомендуется,
      • После затяжки проводов к клеммам выключателя каждый раз проверяем правильность затяжки проводов ,
      • Следует проверить, правильно ли вставлены натянутые провода в соединительные клеммы выключателя, т.е.между подвижным элементом и неподвижной клеммой,
      Рис. 12. Проводные соединения с автоматическими выключателями

      Рис. 13. Электрическая схема соединений однофазных автоматических выключателей

      Выбор соответствующих автоматических выключателей.

      Стандарт ПН-ХД 60364-4-43:2012 говорит нам о том, что устройства защиты следует выбирать так, чтобы в случае протекания токов величиной, превышающей длительно допустимую токопропускную способность Iz, их срабатывание происходит до чрезмерного повышения температуры проводников.Эти требования считаются выполненными, если выполняются следующие условия:

      I2 ≤ 1,45 Iz

      где:
      Ib - ток нагрузки или номинальный ток, если задано цепь, питается только одна нагрузка,
      Из - длительно допустимая токовая нагрузка кабеля,
      В - номинальный ток или ток уставки защитного устройства,
      I2 - рабочий ток защитного устройства.

      Ток срабатывания устройства I2 следует определять как кратное номинальному току In максимального тока выключателя или предохранителя по формуле:

      I2 = k × In

      где:
      k коэффициент умножения тока, вызывающего срабатывание защитного устройства, принимается равным: 1.6 и 2.1 для плавких вставок и 1.45 для автоматических выключателей с характеристиками B, C и D .

      Пример №1

      Имеем токоцепь на кухню с уложенным под штукатурку кабелем ЖДЫп сечением 3×2,5мм2. К этим цепям мы хотим подключить духовку мощностью 2000Вт. Какой миниатюрный автоматический выключатель следует использовать для этой цепи?

      Ввод:

      • Сечение кабеля YDYp 3 × 2,5мм2 - из таблицы 2 можно прочитать допустимую нагрузку по току, которая равна 18,5А
      • Номинальный ток печи после преобразования из номинальной мощности составляет ок.8,7А

      Подставляя в вышеприведенные формулы:

      8,7А ≤ In ≤ 18,5А => исходя из этой зависимости видим, что номинальный ток защиты из имеющихся серий типов может быть 10А или 16А . По опыту будем использовать защиту на 16А.

      8,7 А ≤16 ≤ 18,5 А - выполнено условие 1 = 23,2А

      23,2 ≤ 26,825 - выполнено условие 2

      Что касается защитных характеристик, то по пусковому току нам достаточно "Б".

      Таблица 2. Допустимая токовая нагрузка кабелей в зависимости от места и способа прокладки

      Сводка

      Помните, что в случае бытовых или жилых установок мы в основном имеем дело с автоматическими выключателями с Характеристика "В". Что касается значений номинальных токов, то мы в основном используем защиты на 10А для цепей освещения, расположенных с проводником сечением 1,5мм2, а для розеточных и других цепей в основном используем защиты на 16А - для проводников сечением 2,5мм2.

      В резюме статьи также стоит обратить внимание на то, что польский стандарт PN-EN 60364-4-41 определяет автоматический выключатель максимального тока как элемент защиты от непрямого прикосновения . К сожалению, из-за времени отклика этого элемента недостаточно для защиты от прямого контакта. Для этих целей необходимо дополнительно использовать устройства защитного отключения в цепях питания.

      Устройства для этой статьи были предоставлены Eaton Electric Sp.о.о.

      Eaton Electric является производителем высококачественного оборудования для промышленной автоматизации, сигнализации, коммутации, безопасности и монтажа, а также низковольтных систем распределения энергии. Дополнительная информация:
      www.moeller.pl

      .

      Маркировка устройств защитного отключения (УЗО) и какой автоматический выключатель применять в цепях питания компьютера

      Какое УЗО следует использовать для защиты? Какой тип будет наиболее подходящим для нашей установки?

      Ниже я привожу краткое описание популярных УЗО и их обозначения.
      (Символы, показанные ниже, находятся на переключателе, поэтому мы можем проверить правильность покупки.)

      ***

      Тип AC - реагирует только на синусоидальный переменный ток.
      Не сработает при импульсном или выпрямленном токе утечки (такой вид тока встречается в импульсных блоках питания).

      Ток отключения начинается с 50% номинального тока.

      Согласно IEC 60364-5-53 этот тип УЗО (а также типы A и B) будет реагировать на (последовательные поля)
      (ток утечки, в примерах цепей, принимая ток как указано):

      Если это автоматический выключатель не типа "G" или "S", максимальное время срабатывания будет следующим:
      IΔN
      5 * I∆N
      ( того же типа A и B )

      ***

      Тип А - реагирует на синусоидальный переменный ток, пульсирующий (половинной), и пульсирующий с постоянной составляющей до 6 мА.
      Он не работает с выпрямленным током, поэтому не является эффективной защитой для некоторых цепей инверторов и выпрямителей. С другой стороны, он эффективно защищает от устройств, оснащенных импульсными блоками питания.
      Особое внимание на тип используемого УЗО следует обратить владельцам фотоэлектрических установок. Вопрос в том, есть ли в инверторе разделительный трансформатор - когда преобразователь переменного тока вырабатывает из постоянного).

      Ток отключения начинается с 35% номинального тока.

      Согласно IEC 60364-5-53, этот тип УЗО (и автоматический выключатель типа B) будет реагировать на (последовательные поля)
      (ток утечки, в примерах цепей, принимая ток как указано):

      ***

      Тип В - реагирует на переменный ток, пульсирующий (половинной), и пульсирующий с постоянной составляющей до 6 мА и выпрямленный. Он также реагирует на более высокие частоты (гармоники!). Этот тип устройства защитного отключения следует использовать в качестве защиты телекоммуникационных установок.


      Ток отключения начинается при 50 % номинального тока.

      Согласно IEC 60364-5-53 этот тип УЗО будет реагировать на (последовательные поля):
      (ток утечки, в примерах цепей, принимая ток как указано):

      ***

      Другие обозначения УЗО:


      • " G ", " HI ", " HPI " - с кратковременной задержкой: допускают возникновение небольшого тока утечки на короткое время, благодаря чему правильно защищают устройства, где небольшая утечка ток может возникнуть в момент их включения (ИБП, холодильники, люминесцентные лампы).Минимальная задержка 10 мс (обычно ближе к 30 мс, что ближе к характеристикам приемников).
      • " S " выборочный: срабатывание происходит только по истечении заданного времени, в течение которого должны быть соблюдены условия для этого отключения. Обычно используется в качестве основной защиты цепей, где уже установлены УЗО. В результате они не будут отключены (основное УЗО) УЗО, установленными «ниже по течению». Максимальное время отклика определяется следующим образом: I∆N 130 мс - 500 мс и 5 * I∆N 50 мс - 150 мс
      • « У » реагирует на дифференциальные токи, а также однополупериодные токи с постоянной составляющей.Их основное назначение – защита преобразователей. Этот тип предназначен для обнаружения гармоник в токе утечки.
      • " F " аналогичен типу B, но также реагирует на более высокие частоты (гармоники!).

      При обсуждении УЗО мы встретим следующие сокращения:


      • УЗО (GFI) - Устройство защитного отключения - без встроенной защиты от перегрузки по току, поэтому имеет только устройство защитного отключения.
      • ВДТ (GFCI) - Устройство защитного отключения с защитой от перегрузки по току - со встроенной защитой от перегрузки по току, т.е. устройством защиты от короткого замыкания, перегрузки и дифференциального тока.
      • SRCD - Розетка RCD
      • PRCD - Переносное устройство защитного отключения

      Можно выделить два типа конструктивных решений УЗО:
      • Независимые от напряжения - определяются как электромеханические и используют для работы энергию дифференциального тока.
      • Зависимость от напряжения — они используют электроэнергию для питания своей электроники, ответственной за активацию защиты.



      Практическое примечание: Приведенная выше маркировка обеспечивает соответствие стандартам и предсказуемость. Практика показывает, что безопасность «лучше», чем это видно из описания выше. Следствием этого является, например, срабатывание выключателя переменного тока, взаимодействующего, например, с устройствами с импульсными источниками питания, когда в этом нет необходимости.Поэтому стоит подгонять тип УЗО под конкретную цель.

      ***

      Так как автоматические выключатели типа В очень дорогие, а у меня дома нет, например, фотогальванической установки, я решил использовать автоматические выключатели типа А :


      В случае телекоммуникационной установки (например, серверные: Серверные - различные архивные фото ) необходимо индивидуально проверить, какие устройства будут использоваться и соответственно выбрать тип УЗО, принимая во внимание необходимость использования типа В и , что полностью исключает тип AC .Большие установки требуют большого количества цепей и, следовательно, большого количества предохранительных устройств. Однако, только максимально разделив цепи, мы можем получить рабочие параметры 24/7/365.

      ***

      Помимо выбора типа УЗО, следует учитывать выбор тока и времени срабатывания.

      Оптимально использовать УЗО с минимально возможным током утечки, например 10 мА. Однако это может привести к тому, что он будет работать в "случайных" ситуациях. Такой переключатель может быть слишком чувствительным.Стандартными считаются автоматические выключатели с чувствительностью 30 мА. Иногда необходимо использовать автоматический выключатель на 300мА, но тогда у такого УЗО другие защитные задачи.
      Вы можете проверить ток утечки устройств, а затем выбрать соответствующее УЗО. Ток утечки можно проверить, например, так:

      Следует помнить, что значение тока отключения УЗО является максимальным значением и, например, для автоматического выключателя с чувствительностью 30мА обычно составляет около 20мА.

      Время отключения (срабатывание УЗО) следует выбирать в соответствии с конкретными требованиями.Обычно требуется, чтобы это время было менее 0,4 с (длительное напряжение прикосновения ≤ 50 В), а в условиях повышенного риска поражения электрическим током оно должно быть менее 0,2 с (длительное напряжение прикосновения ≤ 25 В).

      Соответствующие стандарты:
      PN-IEC 364-481

      ПН-МЭК 60364-4-41

      ПН-МЭК 60364-5-53: 1999
      PN-IEC-60364-6-61
      PN-EN 61008-1 / A11

      PN-92 / E05009 / 42
      PN-92 / E05009 / 482
      PN-92 / E05009 / 701
      ПН-92 / Э05009 / 702
      ПН-92 / Э05009 / 705
      ПН-92 / Э05009 / 708
      5 PN-HD 602000-HD 602000-HD 602004-HD 602004

      ***


      Следует помнить, что от 0,5% до 2% УЗО после нескольких лет эксплуатации (в благоприятных климатических условиях) выходят из строя (постатистическое исследование). При неблагоприятных климатических условиях (например, при влажности) количество неисправных выключателей увеличивается даже до 9%.

      ***

      Обновление: 21.04.2016
      Создать: 22.09.2014
      .

      Центр железнодорожных технологий в Быдгоще

      ТЯГОВЫЕ ТРАНСПОРТНЫЕ СРЕДСТВА
      ЭЛЕКТРИЧЕСКИЕ АППАРАТЫ И ОБОРУДОВАНИЕ


      Автоматические выключатели постоянного тока, как и выключатели переменного тока, предназначены для отключения токов короткого замыкания и перегрузки. Автоматические выключатели постоянного тока делятся по быстродействию на быстродействующие и небыстродействующие , а по способу действия на поляризованные , неполяризованные и частично поляризованные .
      Быстродействующие автоматические выключатели имеют время срабатывания около 0,3 с и отключают токи короткого замыкания, как правило, при достижении ими установившегося значения, что в цепях высокого напряжения может быть вредным. По этой причине автоматические выключатели этого типа не используются в цепях, где могут протекать большие токи короткого замыкания. С другой стороны, быстродействующие автоматические выключатели отключают токи короткого замыкания еще до того, как они достигнут устойчивого значения, время срабатывания обычно не превышает 0,06 с.
      Автоматические выключатели полярного типа работают только при определенном направлении протекания тока.В случае непостоянного направления тока, даже при очень большом значении, переключатель не сработает. Неполяризованные автоматические выключатели работают независимо от направления протекания тока, а частично поляризованные автоматические выключатели работают при разных значениях для каждого направления.
      На приведенном ниже графике сравниваются формы тока, отключаемого автоматическими выключателями - быстрым (1) и небыстрым (2).
      Отключение расцепителя I n происходит в течение t 1 .Время t 2 – момент размыкания контактов быстродействующим выключателем. Сразу после этого зажигается дуга, которая длится некоторое время и гаснет, затем ток уменьшается и полностью прерывается в течение t 3 . Быстродействующий выключатель размыкает свои контакты только в момент времени t 4 , после чего дуга зажигается, гаснет и ток уменьшается и в момент времени t 5 цепь разрывается.
      Быстродействующий автоматический выключатель отключает ток короткого замыкания до того, как он достигнет установленного значения, а быстродействующий автоматический выключатель после того, как ток короткого замыкания достигнет своего значения.По этой причине небыстродействующие автоматические выключатели не следует использовать в цепях высокого напряжения.

      В тяговых распределительных щитах на тяговых подстанциях, в секционных кабинах и в электровозах применяют быстродействующие выключатели . На подстанции и в кабине выключатели предназначены для отключения токов короткого замыкания и перегрузок, протекающих в тяговой сети, параметры этих выключателей больше, чем применяемые в электровозах. В свою очередь быстродействующие выключатели, применяемые в электровозах, предназначены для отключения токов короткого замыкания и перегрузок, протекающих по главной цепи локомотива (тяговой).Электроагрегаты и тепловозы с электротрансмиссией обычно не имеют быстродействующих выключателей. Их заменяют контакторы, подключенные к реле защиты. В электровозах быстродействующий выключатель располагается в самом начале главной цепи в высоковольтном шкафу.
      Работа автоматического выключателя может быть прямым автоматическим отключением в результате отключения самого автоматического выключателя или непрямым отключением при срабатывании некоторых реле защиты.В некоторых решениях дифференциальное реле и реле минимального напряжения работают на быстродействующем автоматическом выключателе, а тяговые двигатели максимального тока — на линейных контакторах. Быстродействующий выключатель также может быть отключен косвенно при падении давления в главном проводе и в результате срабатывания реле перегрузки главного преобразователя или реле перегрева поезда. Преднамеренное размыкание происходит в результате разрыва водителем цепи удерживающей катушки с пульта в салоне, либо подачи питания на отключающую катушку - это зависит от конструкции выключателя.

      Автоматические выключатели постоянного тока имеют несколько иную конструкцию, чем автоматические выключатели переменного тока. Условия отключения постоянного тока более сложные, чем при отключении переменного тока. Во время короткого замыкания ток короткого замыкания увеличивается очень быстро и достигает очень больших значений. Его значение зависит от напряжения питания и сопротивления контура повреждения. Обычно сопротивление очень мало, поэтому ток короткого замыкания очень велик. При размыкании контактов загорается электрическая дуга. Это явление сопровождается повышением напряжения (перенапряжением), величина которого зависит от индуктивности цепи и скорости гашения дуги.Чем больше индуктивность цепи и чем короче время размыкания цепи, тем больше перенапряжение, которое может повредить изоляцию. Наибольшее перенапряжение будет иметь место при гашении дуги. Хотя электрическая дуга в основном является вредным явлением, ее возникновению препятствует немедленное прерывание протекания тока, что предотвращает внезапные скачки напряжения.
      При постоянном токе погасить дугу сложнее, чем при переменном токе. Это связано с тем, что постоянный ток не меняет свое направление или значение на уменьшающееся значение, поэтому мгновенное значение никогда не равно нулю.В случае переменного тока, даже во время нарастания тока короткого замыкания, ток моментально равен нулю. Этот момент способствует гашению дуги.

      Конструкция и работа быстродействующих выключателей

      Время отключения цепи складывается из времени срабатывания расцепителя, времени размыкания контактов выключателем и времени гашения дуги. Первые два фактора зависят от конструкции выключателя, третий – от конструкции камеры пожаротушения. Обычно расцепитель в автоматическом выключателе воздействует непосредственно на исполнительный механизм контактов.В нормальном состоянии выключатель работает с замкнутыми контактами, механизм которых может удерживаться храповым механизмом (храповые выключатели), магнитными силами (магнитные защелки) или пружиной (размыкающие выключатели).

      Магнитные быстродействующие автоматические выключатели довольно популярны. Конструкция быстродействующего выключателя БВП-1Г с магнитной защелкой и пневматическим приводом представлена ​​ниже.


      Включение автоматического выключателя (замыкание главных контактов)

      Удерживающая катушка (3) питается по цепи низкого напряжения 110 В, установленной на сердечнике (1).Эта катушка создает магнитное поле. Замыкая выключатель (15) питающей катушки (14), электропневматический клапан (13) открывает электропневматический клапан. Сжатый воздух будет поступать в привод (12). Поршень исполнительного механизма будет вытолкнут и через упорный шток (11) будет толкать подвижный контактный рычаг. Одновременно это вызывает натяжение пружин (10) и возвратной пружины (9). Якорь подвижного контактного рычага (18) будет притягиваться к сердечнику (1) магнитным полем, создаваемым удерживающей катушкой (3).В это время переключатель (15) размыкается, питание катушки электропневматического клапана (14) отключается, а электропневматический клапан (13) закрывается. Сжатый воздух внутри привода (12) будет выпущен через выпускные отверстия в клапане. Возвратные пружины (10) возвращают цилиндр (12) в исходное положение. Возвратная пружина (9) вызывает натяжение подвижного контактного рычага, имеющего гибкое плечо (17). Якорь (18) удерживается сердечником (1), а возвратная пружина (9) тянет рычаг в другую сторону.Гибкое плечо рычага (17) согнуто так, что подвижный контакт (5) касается неподвижного контакта (6). Тяговый ток протекает через выпускные катушки (19), контакты: неподвижный (6) и подвижный (5), подвижный контактный рычаг, гибкое плечо (17) и пусковую катушку (2). Этот ток создает магнитный поток на пусковой катушке (2), противоположный магнитному потоку, создаваемому удерживающей катушкой (3), тем самым ослабляя магнитный поток, создаваемый удерживающей катушкой (3).

      Выключение автоматического выключателя (размыкание главных контактов)

      Автоматический выключатель может сработать при срабатывании расцепителя максимального тока автоматического выключателя, реле защиты (максимального тока тяговых двигателей и инвертора, минимального напряжения, повышенного напряжения, дифференциального и электрического нагрева) отключен, вспомогательные контакты которого (20) и (21) являются частью окружности удерживающей катушки (3).
      В первом случае выключатель сработает при протекании тока короткого замыкания или перегрузки в тяговой цепи, что приведет к тому, что магнитный поток, создаваемый катушкой срабатывания (2), будет достаточно большим, чтобы ослабить поток, создаваемый удерживающей катушкой. и сердечник уже не сможет удерживать якорь (18), оттянутый назад возвратной пружиной (9). Затем подвижный контактный рычаг (5) вернется в положение, в котором он находился до включения выключателя. Контакты разомкнутся и создастся электрическая дуга, которая будет направлена ​​через контактные уголки (8) в камеру гашения (7).Под действием дутьевых змеевиков (19) и камеры тушения (7) он растянется и погаснет.
      Во втором случае выключатель сработает, т.к. в цепи удерживающей катушки (3) есть вспомогательные контакты реле защиты и при срабатывании реле размыкаются вспомогательные контакты реле (20 - резервные тяговые двигатели или 21 - дифференциальные ) и питание удерживающей катушки (3) прерывается. Это приведет к тому, что возвратная пружина (9) войдет в зацепление с якорем (18), и контакты разомкнутся.
      Сердечник триггера имеет регулировочные ручки (4), которые регулируют текущие настройки. Физически это осуществляется изменением натяжения пружин или изменением магнитных свойств сердечника за счет изменения зазора в магнитопроводе, использования шунта в зазоре или изменения сечения сердечника.

      Приводы автоматических выключателей

      Автоматические выключатели могут приводиться в действие электродвигателем, соленоидом или сжатым воздухом. Кроме того, каждый переключатель имеет ручной привод, которым может управлять человек.Время включения двигателем достаточно велико, привод с соленоидом прост и надежен, но потребляет много энергии. Автоматические выключатели сжатого воздуха используются везде, где есть установка сжатого воздуха. Обычно в электровозах применяют третий способ.

      Камеры пожаротушения

      Дугогасительная (дугогасительная) камера представляется простейшим элементом быстродействующего выключателя. На практике создание хорошей камеры пожаротушения требует лабораторных исследований и опоры на опыт.Форма камеры и ее внутренних перегородок имеет большое значение, так как влияет на скорость гашения дуги. Время гашения дуги в значительной степени зависит от камеры гашения. Следует помнить, что простое размыкание контактов при горении электрической дуги не приводит к разрыву цепи. При больших токах короткого замыкания за долю секунды может произойти разрушение устройства, через которое протекает ток короткого замыкания, а при больших напряжениях эта доля может решить судьбу человека, пораженного электрическим током.

      Прерывание больших токов короткого замыкания за короткое время индуцирует электродвижущую силу самоиндукции, величина которой может быть очень высокой, даже превышающей напряжение питания. Изоляция может пробиться или дуга снова загорится. Чтобы этого не произошло, при размыкании контактов в основную цепь включают дополнительное сопротивление для уменьшения крутизны нарастания тока.
      При размыкании контактов возникает электрическая дуга, которая передается на контактные уголки, и таким образом основные контакты не подгорают.Эти конусы частично размещены в дугогасительной камере. Дополнительно к основной цепи подключена вытяжная катушка, которая индуцирует переменный магнитный поток при зажигании дуги, заставляющий дугу двигаться в сторону камеры. Эта катушка может быть внутри или снаружи камеры.
      Дугогасительная камера изготовлена ​​из материалов, устойчивых к высоким температурам. Внутри камеры имеются перегородки, в зависимости от конструкции они могут быть последовательными, параллельными или смешанными перегородками. В конструкциях некоторых камер используются химические явления, возникающие при плавлении различных металлов.Например, в некоторых вариантах осуществления элементы направления дуги изготовлены из латуни, которая при высоких температурах выделяет пары металла. Это повышает давление в камере и облегчает гашение дуги. Избыточные газы в камере выходят через отверстия в верхней части камеры. В других решениях используются камеры, в которых дуга разделяется и гасится независимо в нескольких частях камеры.

      Очень важно содержать камеру в чистоте. Электрическая дуга высвобождает различные оксиды, которые могут осаждаться внутри камеры.Это загрязнение может оказать существенное влияние на явления, происходящие при гашении дуги, и затруднить ее гашение. Таким образом, дугогасительную камеру следует периодически обслуживать и не допускать ее чрезмерного загрязнения.

      Быстродействующие автоматические выключатели иногда должны иметь полярность. Это связано с тем, что автоматический выключатель реагирует не только на избыточный ток в цепи, но и на направление протекания тока. Сама конструкция выключателя с магнитной защелкой обусловливает его полярность, в то время как в рубильных выключателях это достигается применением дополнительной поляризующей обмотки на электромагните.Спусковой крючок поляризуется в защелках переключателей.

      Бывает, что несколько локомотивов осуществляют пуск одновременно. В этом случае от тяговой подстанции отбирается довольно большой ток, но такая ситуация длится лишь мгновение. В такой ситуации быстродействующий расцепитель автоматического выключателя может реагировать, рассматривая ток нагрузки как перегрузку или даже короткое замыкание. В такой ситуации применяется селективное отключение чрезмерных токов с помощью магнитного шунта, включенного параллельно расцепителю автоматического выключателя.Для быстро нарастающего тока короткого замыкания магнитный шунт представляет собой большой импеданс, и поэтому большой ток будет протекать через обмотку расцепителя, вызывая срабатывание автоматического выключателя. В случае тока нагрузки шунт и цепь отключения имеют одинаковые сопротивления по току. Таким образом, ток будет разветвляться и не сработает автоматический выключатель.

      Применение быстродействующих выключателей

      Быстродействующие выключатели применяются в тяговых распределительных устройствах тяговых подстанций постоянного тока и в секционных шкафах для отключения токов короткого замыкания и перегрузки из тяговой цепи.В электровозах быстродействующие выключатели являются основной защитой главных и вспомогательных цепей высокого напряжения. Быстродействующий выключатель в локомотиве работает с реле защиты, т. е. дифференциальной, минимального напряжения, преобразователя максимального тока, а иногда и с резервными двигателями.

      Основные параметры быстродействующих выключателей

      - номинальное напряжение [В];
      - номинальный ток [А];
      - тип привода;
      - номинальная отключающая способность при коротком замыкании [кА];
      - критический ток [А];
      - преддуговое время [мс];
      - время дуги [мс];
      - управляющее напряжение [В];
      - потребляемая мощность удерживающей катушки [Вт];
      - потребляемая мощность катушки электропневматического клапана [Вт];
      - номинальное давление воздуха для привода [МПа], ранее [кг/см 2 ];
      - основное контактное давление [кг];
      - отверстие главного контакта [мм];
      - настройка триггера [A].

      О типах мощных автоматических выключателей переменного тока см. здесь .


      Ниже приведены ссылки на конкретные вопросы, связанные с тягачами:

      .

      Смотрите также